Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ldil1o
Next ⟩
ldilval
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldil1o
Description:
A lattice dilation is a one-to-one onto function.
(Contributed by
NM
, 19-Apr-2013)
Ref
Expression
Hypotheses
ldil1o.b
⊢
B
=
Base
K
ldil1o.h
⊢
H
=
LHyp
⁡
K
ldil1o.d
⊢
D
=
LDil
⁡
K
⁡
W
Assertion
ldil1o
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
D
→
F
:
B
⟶
1-1 onto
B
Proof
Step
Hyp
Ref
Expression
1
ldil1o.b
⊢
B
=
Base
K
2
ldil1o.h
⊢
H
=
LHyp
⁡
K
3
ldil1o.d
⊢
D
=
LDil
⁡
K
⁡
W
4
simpll
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
D
→
K
∈
V
5
eqid
⊢
LAut
⁡
K
=
LAut
⁡
K
6
2
5
3
ldillaut
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
D
→
F
∈
LAut
⁡
K
7
1
5
laut1o
⊢
K
∈
V
∧
F
∈
LAut
⁡
K
→
F
:
B
⟶
1-1 onto
B
8
4
6
7
syl2anc
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
D
→
F
:
B
⟶
1-1 onto
B