Metamath Proof Explorer


Theorem ldilcnv

Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses ldilcnv.h H=LHypK
ldilcnv.d D=LDilKW
Assertion ldilcnv KHLWHFDF-1D

Proof

Step Hyp Ref Expression
1 ldilcnv.h H=LHypK
2 ldilcnv.d D=LDilKW
3 simpll KHLWHFDKHL
4 eqid LAutK=LAutK
5 1 4 2 ldillaut KHLWHFDFLAutK
6 4 lautcnv KHLFLAutKF-1LAutK
7 3 5 6 syl2anc KHLWHFDF-1LAutK
8 eqid BaseK=BaseK
9 eqid K=K
10 8 9 1 2 ldilval KHLWHFDxBaseKxKWFx=x
11 10 3expa KHLWHFDxBaseKxKWFx=x
12 11 3impb KHLWHFDxBaseKxKWFx=x
13 12 fveq2d KHLWHFDxBaseKxKWF-1Fx=F-1x
14 8 1 2 ldil1o KHLWHFDF:BaseK1-1 ontoBaseK
15 14 3ad2ant1 KHLWHFDxBaseKxKWF:BaseK1-1 ontoBaseK
16 simp2 KHLWHFDxBaseKxKWxBaseK
17 f1ocnvfv1 F:BaseK1-1 ontoBaseKxBaseKF-1Fx=x
18 15 16 17 syl2anc KHLWHFDxBaseKxKWF-1Fx=x
19 13 18 eqtr3d KHLWHFDxBaseKxKWF-1x=x
20 19 3exp KHLWHFDxBaseKxKWF-1x=x
21 20 ralrimiv KHLWHFDxBaseKxKWF-1x=x
22 8 9 1 4 2 isldil KHLWHF-1DF-1LAutKxBaseKxKWF-1x=x
23 22 adantr KHLWHFDF-1DF-1LAutKxBaseKxKWF-1x=x
24 7 21 23 mpbir2and KHLWHFDF-1D