| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldilco.h |
|
| 2 |
|
ldilco.d |
|
| 3 |
|
simp1l |
|
| 4 |
|
eqid |
|
| 5 |
1 4 2
|
ldillaut |
|
| 6 |
5
|
3adant3 |
|
| 7 |
1 4 2
|
ldillaut |
|
| 8 |
7
|
3adant2 |
|
| 9 |
4
|
lautco |
|
| 10 |
3 6 8 9
|
syl3anc |
|
| 11 |
|
simp11 |
|
| 12 |
|
simp13 |
|
| 13 |
|
eqid |
|
| 14 |
13 1 2
|
ldil1o |
|
| 15 |
11 12 14
|
syl2anc |
|
| 16 |
|
f1of |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
simp2 |
|
| 19 |
|
fvco3 |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
|
simp3 |
|
| 22 |
|
eqid |
|
| 23 |
13 22 1 2
|
ldilval |
|
| 24 |
11 12 18 21 23
|
syl112anc |
|
| 25 |
24
|
fveq2d |
|
| 26 |
|
simp12 |
|
| 27 |
13 22 1 2
|
ldilval |
|
| 28 |
11 26 18 21 27
|
syl112anc |
|
| 29 |
20 25 28
|
3eqtrd |
|
| 30 |
29
|
3exp |
|
| 31 |
30
|
ralrimiv |
|
| 32 |
13 22 1 4 2
|
isldil |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
10 31 33
|
mpbir2and |
|