Metamath Proof Explorer


Theorem ldilset

Description: The set of lattice dilations for a fiducial co-atom W . (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ldilset.b B = Base K
ldilset.l ˙ = K
ldilset.h H = LHyp K
ldilset.i I = LAut K
ldilset.d D = LDil K W
Assertion ldilset K C W H D = f I | x B x ˙ W f x = x

Proof

Step Hyp Ref Expression
1 ldilset.b B = Base K
2 ldilset.l ˙ = K
3 ldilset.h H = LHyp K
4 ldilset.i I = LAut K
5 ldilset.d D = LDil K W
6 1 2 3 4 ldilfset K C LDil K = w H f I | x B x ˙ w f x = x
7 6 fveq1d K C LDil K W = w H f I | x B x ˙ w f x = x W
8 breq2 w = W x ˙ w x ˙ W
9 8 imbi1d w = W x ˙ w f x = x x ˙ W f x = x
10 9 ralbidv w = W x B x ˙ w f x = x x B x ˙ W f x = x
11 10 rabbidv w = W f I | x B x ˙ w f x = x = f I | x B x ˙ W f x = x
12 eqid w H f I | x B x ˙ w f x = x = w H f I | x B x ˙ w f x = x
13 4 fvexi I V
14 13 rabex f I | x B x ˙ W f x = x V
15 11 12 14 fvmpt W H w H f I | x B x ˙ w f x = x W = f I | x B x ˙ W f x = x
16 7 15 sylan9eq K C W H LDil K W = f I | x B x ˙ W f x = x
17 5 16 syl5eq K C W H D = f I | x B x ˙ W f x = x