Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ldilval
Next ⟩
idldil
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldilval
Description:
Value of a lattice dilation under its co-atom.
(Contributed by
NM
, 20-May-2012)
Ref
Expression
Hypotheses
ldilval.b
⊢
B
=
Base
K
ldilval.l
⊢
≤
˙
=
≤
K
ldilval.h
⊢
H
=
LHyp
⁡
K
ldilval.d
⊢
D
=
LDil
⁡
K
⁡
W
Assertion
ldilval
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
D
∧
X
∈
B
∧
X
≤
˙
W
→
F
⁡
X
=
X
Proof
Step
Hyp
Ref
Expression
1
ldilval.b
⊢
B
=
Base
K
2
ldilval.l
⊢
≤
˙
=
≤
K
3
ldilval.h
⊢
H
=
LHyp
⁡
K
4
ldilval.d
⊢
D
=
LDil
⁡
K
⁡
W
5
eqid
⊢
LAut
⁡
K
=
LAut
⁡
K
6
1
2
3
5
4
isldil
⊢
K
∈
V
∧
W
∈
H
→
F
∈
D
↔
F
∈
LAut
⁡
K
∧
∀
x
∈
B
x
≤
˙
W
→
F
⁡
x
=
x
7
simpr
⊢
F
∈
LAut
⁡
K
∧
∀
x
∈
B
x
≤
˙
W
→
F
⁡
x
=
x
→
∀
x
∈
B
x
≤
˙
W
→
F
⁡
x
=
x
8
6
7
syl6bi
⊢
K
∈
V
∧
W
∈
H
→
F
∈
D
→
∀
x
∈
B
x
≤
˙
W
→
F
⁡
x
=
x
9
breq1
⊢
x
=
X
→
x
≤
˙
W
↔
X
≤
˙
W
10
fveq2
⊢
x
=
X
→
F
⁡
x
=
F
⁡
X
11
id
⊢
x
=
X
→
x
=
X
12
10
11
eqeq12d
⊢
x
=
X
→
F
⁡
x
=
x
↔
F
⁡
X
=
X
13
9
12
imbi12d
⊢
x
=
X
→
x
≤
˙
W
→
F
⁡
x
=
x
↔
X
≤
˙
W
→
F
⁡
X
=
X
14
13
rspccv
⊢
∀
x
∈
B
x
≤
˙
W
→
F
⁡
x
=
x
→
X
∈
B
→
X
≤
˙
W
→
F
⁡
X
=
X
15
14
impd
⊢
∀
x
∈
B
x
≤
˙
W
→
F
⁡
x
=
x
→
X
∈
B
∧
X
≤
˙
W
→
F
⁡
X
=
X
16
8
15
syl6
⊢
K
∈
V
∧
W
∈
H
→
F
∈
D
→
X
∈
B
∧
X
≤
˙
W
→
F
⁡
X
=
X
17
16
3imp
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
D
∧
X
∈
B
∧
X
≤
˙
W
→
F
⁡
X
=
X