Metamath Proof Explorer


Theorem ldilval

Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ldilval.b B = Base K
ldilval.l ˙ = K
ldilval.h H = LHyp K
ldilval.d D = LDil K W
Assertion ldilval K V W H F D X B X ˙ W F X = X

Proof

Step Hyp Ref Expression
1 ldilval.b B = Base K
2 ldilval.l ˙ = K
3 ldilval.h H = LHyp K
4 ldilval.d D = LDil K W
5 eqid LAut K = LAut K
6 1 2 3 5 4 isldil K V W H F D F LAut K x B x ˙ W F x = x
7 simpr F LAut K x B x ˙ W F x = x x B x ˙ W F x = x
8 6 7 syl6bi K V W H F D x B x ˙ W F x = x
9 breq1 x = X x ˙ W X ˙ W
10 fveq2 x = X F x = F X
11 id x = X x = X
12 10 11 eqeq12d x = X F x = x F X = X
13 9 12 imbi12d x = X x ˙ W F x = x X ˙ W F X = X
14 13 rspccv x B x ˙ W F x = x X B X ˙ W F X = X
15 14 impd x B x ˙ W F x = x X B X ˙ W F X = X
16 8 15 syl6 K V W H F D X B X ˙ W F X = X
17 16 3imp K V W H F D X B X ˙ W F X = X