Metamath Proof Explorer


Theorem ldiv

Description: Left-division. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a φ A
ldiv.b φ B
ldiv.c φ C
ldiv.bn0 φ B 0
Assertion ldiv φ A B = C A = C B

Proof

Step Hyp Ref Expression
1 ldiv.a φ A
2 ldiv.b φ B
3 ldiv.c φ C
4 ldiv.bn0 φ B 0
5 oveq1 A B = C A B B = C B
6 1 2 4 divcan4d φ A B B = A
7 6 eqeq1d φ A B B = C B A = C B
8 5 7 syl5ib φ A B = C A = C B
9 oveq1 A = C B A B = C B B
10 3 2 4 divcan1d φ C B B = C
11 10 eqeq2d φ A B = C B B A B = C
12 9 11 syl5ib φ A = C B A B = C
13 8 12 impbid φ A B = C A = C B