Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
ldiv
Next ⟩
rdiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldiv
Description:
Left-division.
(Contributed by
BJ
, 6-Jun-2019)
Ref
Expression
Hypotheses
ldiv.a
⊢
φ
→
A
∈
ℂ
ldiv.b
⊢
φ
→
B
∈
ℂ
ldiv.c
⊢
φ
→
C
∈
ℂ
ldiv.bn0
⊢
φ
→
B
≠
0
Assertion
ldiv
⊢
φ
→
A
⁢
B
=
C
↔
A
=
C
B
Proof
Step
Hyp
Ref
Expression
1
ldiv.a
⊢
φ
→
A
∈
ℂ
2
ldiv.b
⊢
φ
→
B
∈
ℂ
3
ldiv.c
⊢
φ
→
C
∈
ℂ
4
ldiv.bn0
⊢
φ
→
B
≠
0
5
oveq1
⊢
A
⁢
B
=
C
→
A
⁢
B
B
=
C
B
6
1
2
4
divcan4d
⊢
φ
→
A
⁢
B
B
=
A
7
6
eqeq1d
⊢
φ
→
A
⁢
B
B
=
C
B
↔
A
=
C
B
8
5
7
syl5ib
⊢
φ
→
A
⁢
B
=
C
→
A
=
C
B
9
oveq1
⊢
A
=
C
B
→
A
⁢
B
=
C
B
⁢
B
10
3
2
4
divcan1d
⊢
φ
→
C
B
⁢
B
=
C
11
10
eqeq2d
⊢
φ
→
A
⁢
B
=
C
B
⁢
B
↔
A
⁢
B
=
C
12
9
11
syl5ib
⊢
φ
→
A
=
C
B
→
A
⁢
B
=
C
13
8
12
impbid
⊢
φ
→
A
⁢
B
=
C
↔
A
=
C
B