Metamath Proof Explorer


Theorem ldual0v

Description: The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldualv0.v V = Base W
ldualv0.r R = Scalar W
ldualv0.z 0 ˙ = 0 R
ldualv0.d D = LDual W
ldualv0.o O = 0 D
ldualv0.w φ W LMod
Assertion ldual0v φ O = V × 0 ˙

Proof

Step Hyp Ref Expression
1 ldualv0.v V = Base W
2 ldualv0.r R = Scalar W
3 ldualv0.z 0 ˙ = 0 R
4 ldualv0.d D = LDual W
5 ldualv0.o O = 0 D
6 ldualv0.w φ W LMod
7 eqid LFnl W = LFnl W
8 eqid + R = + R
9 eqid + D = + D
10 2 3 1 7 lfl0f W LMod V × 0 ˙ LFnl W
11 6 10 syl φ V × 0 ˙ LFnl W
12 7 2 8 4 9 6 11 11 ldualvadd φ V × 0 ˙ + D V × 0 ˙ = V × 0 ˙ + R f V × 0 ˙
13 1 2 8 3 7 6 11 lfladd0l φ V × 0 ˙ + R f V × 0 ˙ = V × 0 ˙
14 12 13 eqtrd φ V × 0 ˙ + D V × 0 ˙ = V × 0 ˙
15 4 6 ldualgrp φ D Grp
16 eqid Base D = Base D
17 7 4 16 6 11 ldualelvbase φ V × 0 ˙ Base D
18 16 9 5 grpid D Grp V × 0 ˙ Base D V × 0 ˙ + D V × 0 ˙ = V × 0 ˙ O = V × 0 ˙
19 15 17 18 syl2anc φ V × 0 ˙ + D V × 0 ˙ = V × 0 ˙ O = V × 0 ˙
20 14 19 mpbid φ O = V × 0 ˙