Metamath Proof Explorer


Theorem ldualvaddval

Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses ldualvaddval.v V = Base W
ldualvaddval.r R = Scalar W
ldualvaddval.a + ˙ = + R
ldualvaddval.f F = LFnl W
ldualvaddval.d D = LDual W
ldualvaddval.p ˙ = + D
ldualvaddval.w φ W LMod
ldualvaddval.g φ G F
ldualvaddval.h φ H F
ldualvaddval.x φ X V
Assertion ldualvaddval φ G ˙ H X = G X + ˙ H X

Proof

Step Hyp Ref Expression
1 ldualvaddval.v V = Base W
2 ldualvaddval.r R = Scalar W
3 ldualvaddval.a + ˙ = + R
4 ldualvaddval.f F = LFnl W
5 ldualvaddval.d D = LDual W
6 ldualvaddval.p ˙ = + D
7 ldualvaddval.w φ W LMod
8 ldualvaddval.g φ G F
9 ldualvaddval.h φ H F
10 ldualvaddval.x φ X V
11 4 2 3 5 6 7 8 9 ldualvadd φ G ˙ H = G + ˙ f H
12 11 fveq1d φ G ˙ H X = G + ˙ f H X
13 eqid Base R = Base R
14 2 13 1 4 lflf W LMod G F G : V Base R
15 14 ffnd W LMod G F G Fn V
16 7 8 15 syl2anc φ G Fn V
17 2 13 1 4 lflf W LMod H F H : V Base R
18 17 ffnd W LMod H F H Fn V
19 7 9 18 syl2anc φ H Fn V
20 1 fvexi V V
21 20 a1i φ V V
22 inidm V V = V
23 eqidd φ X V G X = G X
24 eqidd φ X V H X = H X
25 16 19 21 21 22 23 24 ofval φ X V G + ˙ f H X = G X + ˙ H X
26 10 25 mpdan φ G + ˙ f H X = G X + ˙ H X
27 12 26 eqtrd φ G ˙ H X = G X + ˙ H X