Metamath Proof Explorer


Theorem le2add

Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion le2add A B C D A C B D A + B C + D

Proof

Step Hyp Ref Expression
1 simpll A B C D A
2 simprl A B C D C
3 simplr A B C D B
4 leadd1 A C B A C A + B C + B
5 1 2 3 4 syl3anc A B C D A C A + B C + B
6 simprr A B C D D
7 leadd2 B D C B D C + B C + D
8 3 6 2 7 syl3anc A B C D B D C + B C + D
9 5 8 anbi12d A B C D A C B D A + B C + B C + B C + D
10 1 3 readdcld A B C D A + B
11 2 3 readdcld A B C D C + B
12 2 6 readdcld A B C D C + D
13 letr A + B C + B C + D A + B C + B C + B C + D A + B C + D
14 10 11 12 13 syl3anc A B C D A + B C + B C + B C + D A + B C + D
15 9 14 sylbid A B C D A C B D A + B C + D