Metamath Proof Explorer


Theorem le2addi

Description: Adding both side of two inequalities. (Contributed by NM, 16-Sep-1999)

Ref Expression
Hypotheses lt2.1 A
lt2.2 B
lt2.3 C
lt.4 D
Assertion le2addi A C B D A + B C + D

Proof

Step Hyp Ref Expression
1 lt2.1 A
2 lt2.2 B
3 lt2.3 C
4 lt.4 D
5 le2add A B C D A C B D A + B C + D
6 1 2 3 4 5 mp4an A C B D A + B C + D