Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
le2sq
Next ⟩
le2sq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
le2sq
Description:
The square function on nonnegative reals is monotonic.
(Contributed by
NM
, 18-Oct-1999)
Ref
Expression
Assertion
le2sq
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
≤
B
↔
A
2
≤
B
2
Proof
Step
Hyp
Ref
Expression
1
le2msq
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
≤
B
↔
A
⁢
A
≤
B
⁢
B
2
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
3
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
4
sqval
⊢
A
∈
ℂ
→
A
2
=
A
⁢
A
5
sqval
⊢
B
∈
ℂ
→
B
2
=
B
⁢
B
6
4
5
breqan12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
≤
B
2
↔
A
⁢
A
≤
B
⁢
B
7
2
3
6
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
2
≤
B
2
↔
A
⁢
A
≤
B
⁢
B
8
7
ad2ant2r
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
2
≤
B
2
↔
A
⁢
A
≤
B
⁢
B
9
1
8
bitr4d
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
≤
B
↔
A
2
≤
B
2