Metamath Proof Explorer


Theorem le2sq2

Description: The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008)

Ref Expression
Assertion le2sq2 A 0 A B A B A 2 B 2

Proof

Step Hyp Ref Expression
1 simprr A 0 A B A B A B
2 simprl A 0 A B A B B
3 0re 0
4 letr 0 A B 0 A A B 0 B
5 3 4 mp3an1 A B 0 A A B 0 B
6 5 exp4b A B 0 A A B 0 B
7 6 com23 A 0 A B A B 0 B
8 7 imp43 A 0 A B A B 0 B
9 2 8 jca A 0 A B A B B 0 B
10 le2sq A 0 A B 0 B A B A 2 B 2
11 9 10 syldan A 0 A B A B A B A 2 B 2
12 1 11 mpbid A 0 A B A B A 2 B 2