Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
le2sq2
Next ⟩
sqge0
Metamath Proof Explorer
Ascii
Unicode
Theorem
le2sq2
Description:
The square of a 'less than or equal to' ordering.
(Contributed by
NM
, 21-Mar-2008)
Ref
Expression
Assertion
le2sq2
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
A
2
≤
B
2
Proof
Step
Hyp
Ref
Expression
1
simprr
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
A
≤
B
2
simprl
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
B
∈
ℝ
3
0re
⊢
0
∈
ℝ
4
letr
⊢
0
∈
ℝ
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
≤
A
∧
A
≤
B
→
0
≤
B
5
3
4
mp3an1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
≤
A
∧
A
≤
B
→
0
≤
B
6
5
exp4b
⊢
A
∈
ℝ
→
B
∈
ℝ
→
0
≤
A
→
A
≤
B
→
0
≤
B
7
6
com23
⊢
A
∈
ℝ
→
0
≤
A
→
B
∈
ℝ
→
A
≤
B
→
0
≤
B
8
7
imp43
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
0
≤
B
9
2
8
jca
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
B
∈
ℝ
∧
0
≤
B
10
le2sq
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
≤
B
↔
A
2
≤
B
2
11
9
10
syldan
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
A
≤
B
↔
A
2
≤
B
2
12
1
11
mpbid
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
A
≤
B
→
A
2
≤
B
2