Metamath Proof Explorer


Theorem le2tri3i

Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000)

Ref Expression
Hypotheses lt.1 A
lt.2 B
lt.3 C
Assertion le2tri3i A B B C C A A = B B = C C = A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 lt.3 C
4 2 3 1 letri B C C A B A
5 1 2 letri3i A = B A B B A
6 5 biimpri A B B A A = B
7 4 6 sylan2 A B B C C A A = B
8 7 3impb A B B C C A A = B
9 3 1 2 letri C A A B C B
10 2 3 letri3i B = C B C C B
11 10 biimpri B C C B B = C
12 9 11 sylan2 B C C A A B B = C
13 12 3impb B C C A A B B = C
14 13 3comr A B B C C A B = C
15 1 2 3 letri A B B C A C
16 1 3 letri3i A = C A C C A
17 16 biimpri A C C A A = C
18 17 eqcomd A C C A C = A
19 15 18 stoic3 A B B C C A C = A
20 8 14 19 3jca A B B C C A A = B B = C C = A
21 1 eqlei A = B A B
22 2 eqlei B = C B C
23 3 eqlei C = A C A
24 21 22 23 3anim123i A = B B = C C = A A B B C C A
25 20 24 impbii A B B C C A A = B B = C C = A