Metamath Proof Explorer


Theorem leabs

Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion leabs A A A

Proof

Step Hyp Ref Expression
1 0red A 0
2 id A A
3 absid A 0 A A = A
4 eqcom A = A A = A
5 eqle A A = A A A
6 4 5 sylan2b A A = A A A
7 3 6 syldan A 0 A A A
8 recn A A
9 absge0 A 0 A
10 8 9 syl A 0 A
11 abscl A A
12 8 11 syl A A
13 0re 0
14 letr A 0 A A 0 0 A A A
15 13 14 mp3an2 A A A 0 0 A A A
16 12 15 mpdan A A 0 0 A A A
17 10 16 mpan2d A A 0 A A
18 17 imp A A 0 A A
19 1 2 7 18 lecasei A A A