Metamath Proof Explorer


Theorem leadd1

Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion leadd1 A B C A B A + C B + C

Proof

Step Hyp Ref Expression
1 ltadd1 B A C B < A B + C < A + C
2 1 3com12 A B C B < A B + C < A + C
3 2 notbid A B C ¬ B < A ¬ B + C < A + C
4 simp1 A B C A
5 simp2 A B C B
6 4 5 lenltd A B C A B ¬ B < A
7 simp3 A B C C
8 4 7 readdcld A B C A + C
9 5 7 readdcld A B C B + C
10 8 9 lenltd A B C A + C B + C ¬ B + C < A + C
11 3 6 10 3bitr4d A B C A B A + C B + C