Metamath Proof Explorer


Theorem leadd2

Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 26-Oct-1999)

Ref Expression
Assertion leadd2 A B C A B C + A C + B

Proof

Step Hyp Ref Expression
1 leadd1 A B C A B A + C B + C
2 simp1 A B C A
3 2 recnd A B C A
4 simp3 A B C C
5 4 recnd A B C C
6 3 5 addcomd A B C A + C = C + A
7 simp2 A B C B
8 7 recnd A B C B
9 8 5 addcomd A B C B + C = C + B
10 6 9 breq12d A B C A + C B + C C + A C + B
11 1 10 bitrd A B C A B C + A C + B