Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
leadd2
Next ⟩
ltsubadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
leadd2
Description:
Addition to both sides of 'less than or equal to'.
(Contributed by
NM
, 26-Oct-1999)
Ref
Expression
Assertion
leadd2
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
↔
C
+
A
≤
C
+
B
Proof
Step
Hyp
Ref
Expression
1
leadd1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
↔
A
+
C
≤
B
+
C
2
simp1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℝ
3
2
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℂ
4
simp3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
C
∈
ℝ
5
4
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
C
∈
ℂ
6
3
5
addcomd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
+
C
=
C
+
A
7
simp2
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
∈
ℝ
8
7
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
∈
ℂ
9
8
5
addcomd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
+
C
=
C
+
B
10
6
9
breq12d
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
+
C
≤
B
+
C
↔
C
+
A
≤
C
+
B
11
1
10
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
↔
C
+
A
≤
C
+
B