Metamath Proof Explorer


Theorem leadd2i

Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypotheses lt2.1 A
lt2.2 B
lt2.3 C
Assertion leadd2i A B C + A C + B

Proof

Step Hyp Ref Expression
1 lt2.1 A
2 lt2.2 B
3 lt2.3 C
4 leadd2 A B C A B C + A C + B
5 1 2 3 4 mp3an A B C + A C + B