Metamath Proof Explorer


Theorem leaddsub

Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005)

Ref Expression
Assertion leaddsub A B C A + B C A C B

Proof

Step Hyp Ref Expression
1 ltsubadd C B A C B < A C < A + B
2 1 3com13 A B C C B < A C < A + B
3 resubcl C B C B
4 ltnle C B A C B < A ¬ A C B
5 3 4 stoic3 C B A C B < A ¬ A C B
6 5 3com13 A B C C B < A ¬ A C B
7 readdcl A B A + B
8 ltnle C A + B C < A + B ¬ A + B C
9 7 8 sylan2 C A B C < A + B ¬ A + B C
10 9 3impb C A B C < A + B ¬ A + B C
11 10 3coml A B C C < A + B ¬ A + B C
12 2 6 11 3bitr3rd A B C ¬ A + B C ¬ A C B
13 12 con4bid A B C A + B C A C B