Metamath Proof Explorer


Theorem leaddsub2d

Description: 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
Assertion leaddsub2d φ A + B C B C A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 leaddsub2 A B C A + B C B C A
5 1 2 3 4 syl3anc φ A + B C B C A