Metamath Proof Explorer


Theorem leat3

Description: A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses leatom.b B = Base K
leatom.l ˙ = K
leatom.z 0 ˙ = 0. K
leatom.a A = Atoms K
Assertion leat3 K OP X B P A X ˙ P X A X = 0 ˙

Proof

Step Hyp Ref Expression
1 leatom.b B = Base K
2 leatom.l ˙ = K
3 leatom.z 0 ˙ = 0. K
4 leatom.a A = Atoms K
5 1 2 3 4 leat K OP X B P A X ˙ P X = P X = 0 ˙
6 simpl3 K OP X B P A X ˙ P P A
7 eleq1a P A X = P X A
8 6 7 syl K OP X B P A X ˙ P X = P X A
9 8 orim1d K OP X B P A X ˙ P X = P X = 0 ˙ X A X = 0 ˙
10 5 9 mpd K OP X B P A X ˙ P X A X = 0 ˙