Metamath Proof Explorer


Theorem lebnum

Description: The Lebesgue number lemma, or Lebesgue covering lemma. If X is a compact metric space and U is an open cover of X , then there exists a positive real number d such that every ball of size d (and every subset of a ball of size d , including every subset of diameter less than d ) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015) (Proof shortened by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j J = MetOpen D
lebnum.d φ D Met X
lebnum.c φ J Comp
lebnum.s φ U J
lebnum.u φ X = U
Assertion lebnum φ d + x X u U x ball D d u

Proof

Step Hyp Ref Expression
1 lebnum.j J = MetOpen D
2 lebnum.d φ D Met X
3 lebnum.c φ J Comp
4 lebnum.s φ U J
5 lebnum.u φ X = U
6 metxmet D Met X D ∞Met X
7 2 6 syl φ D ∞Met X
8 1 mopnuni D ∞Met X X = J
9 7 8 syl φ X = J
10 9 5 eqtr3d φ J = U
11 eqid J = J
12 11 cmpcov J Comp U J J = U w 𝒫 U Fin J = w
13 3 4 10 12 syl3anc φ w 𝒫 U Fin J = w
14 1rp 1 +
15 simprl φ w 𝒫 U Fin J = w w 𝒫 U Fin
16 15 elin1d φ w 𝒫 U Fin J = w w 𝒫 U
17 16 elpwid φ w 𝒫 U Fin J = w w U
18 17 ad2antrr φ w 𝒫 U Fin J = w X w x X w U
19 simplr φ w 𝒫 U Fin J = w X w x X X w
20 18 19 sseldd φ w 𝒫 U Fin J = w X w x X X U
21 7 ad3antrrr φ w 𝒫 U Fin J = w X w x X D ∞Met X
22 simpr φ w 𝒫 U Fin J = w X w x X x X
23 rpxr 1 + 1 *
24 14 23 mp1i φ w 𝒫 U Fin J = w X w x X 1 *
25 blssm D ∞Met X x X 1 * x ball D 1 X
26 21 22 24 25 syl3anc φ w 𝒫 U Fin J = w X w x X x ball D 1 X
27 sseq2 u = X x ball D 1 u x ball D 1 X
28 27 rspcev X U x ball D 1 X u U x ball D 1 u
29 20 26 28 syl2anc φ w 𝒫 U Fin J = w X w x X u U x ball D 1 u
30 29 ralrimiva φ w 𝒫 U Fin J = w X w x X u U x ball D 1 u
31 oveq2 d = 1 x ball D d = x ball D 1
32 31 sseq1d d = 1 x ball D d u x ball D 1 u
33 32 rexbidv d = 1 u U x ball D d u u U x ball D 1 u
34 33 ralbidv d = 1 x X u U x ball D d u x X u U x ball D 1 u
35 34 rspcev 1 + x X u U x ball D 1 u d + x X u U x ball D d u
36 14 30 35 sylancr φ w 𝒫 U Fin J = w X w d + x X u U x ball D d u
37 2 ad2antrr φ w 𝒫 U Fin J = w ¬ X w D Met X
38 3 ad2antrr φ w 𝒫 U Fin J = w ¬ X w J Comp
39 17 adantr φ w 𝒫 U Fin J = w ¬ X w w U
40 4 ad2antrr φ w 𝒫 U Fin J = w ¬ X w U J
41 39 40 sstrd φ w 𝒫 U Fin J = w ¬ X w w J
42 9 ad2antrr φ w 𝒫 U Fin J = w ¬ X w X = J
43 simplrr φ w 𝒫 U Fin J = w ¬ X w J = w
44 42 43 eqtrd φ w 𝒫 U Fin J = w ¬ X w X = w
45 15 elin2d φ w 𝒫 U Fin J = w w Fin
46 45 adantr φ w 𝒫 U Fin J = w ¬ X w w Fin
47 simpr φ w 𝒫 U Fin J = w ¬ X w ¬ X w
48 eqid y X k w sup ran z X k y D z * < = y X k w sup ran z X k y D z * <
49 eqid topGen ran . = topGen ran .
50 1 37 38 41 44 46 47 48 49 lebnumlem3 φ w 𝒫 U Fin J = w ¬ X w d + x X u w x ball D d u
51 ssrexv w U u w x ball D d u u U x ball D d u
52 39 51 syl φ w 𝒫 U Fin J = w ¬ X w u w x ball D d u u U x ball D d u
53 52 ralimdv φ w 𝒫 U Fin J = w ¬ X w x X u w x ball D d u x X u U x ball D d u
54 53 reximdv φ w 𝒫 U Fin J = w ¬ X w d + x X u w x ball D d u d + x X u U x ball D d u
55 50 54 mpd φ w 𝒫 U Fin J = w ¬ X w d + x X u U x ball D d u
56 36 55 pm2.61dan φ w 𝒫 U Fin J = w d + x X u U x ball D d u
57 13 56 rexlimddv φ d + x X u U x ball D d u