Step |
Hyp |
Ref |
Expression |
1 |
|
lebnum.j |
|
2 |
|
lebnum.d |
|
3 |
|
lebnum.c |
|
4 |
|
lebnum.s |
|
5 |
|
lebnum.u |
|
6 |
|
metxmet |
|
7 |
2 6
|
syl |
|
8 |
1
|
mopnuni |
|
9 |
7 8
|
syl |
|
10 |
9 5
|
eqtr3d |
|
11 |
|
eqid |
|
12 |
11
|
cmpcov |
|
13 |
3 4 10 12
|
syl3anc |
|
14 |
|
1rp |
|
15 |
|
simprl |
|
16 |
15
|
elin1d |
|
17 |
16
|
elpwid |
|
18 |
17
|
ad2antrr |
|
19 |
|
simplr |
|
20 |
18 19
|
sseldd |
|
21 |
7
|
ad3antrrr |
|
22 |
|
simpr |
|
23 |
|
rpxr |
|
24 |
14 23
|
mp1i |
|
25 |
|
blssm |
|
26 |
21 22 24 25
|
syl3anc |
|
27 |
|
sseq2 |
|
28 |
27
|
rspcev |
|
29 |
20 26 28
|
syl2anc |
|
30 |
29
|
ralrimiva |
|
31 |
|
oveq2 |
|
32 |
31
|
sseq1d |
|
33 |
32
|
rexbidv |
|
34 |
33
|
ralbidv |
|
35 |
34
|
rspcev |
|
36 |
14 30 35
|
sylancr |
|
37 |
2
|
ad2antrr |
|
38 |
3
|
ad2antrr |
|
39 |
17
|
adantr |
|
40 |
4
|
ad2antrr |
|
41 |
39 40
|
sstrd |
|
42 |
9
|
ad2antrr |
|
43 |
|
simplrr |
|
44 |
42 43
|
eqtrd |
|
45 |
15
|
elin2d |
|
46 |
45
|
adantr |
|
47 |
|
simpr |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
1 37 38 41 44 46 47 48 49
|
lebnumlem3 |
|
51 |
|
ssrexv |
|
52 |
39 51
|
syl |
|
53 |
52
|
ralimdv |
|
54 |
53
|
reximdv |
|
55 |
50 54
|
mpd |
|
56 |
36 55
|
pm2.61dan |
|
57 |
13 56
|
rexlimddv |
|