Step |
Hyp |
Ref |
Expression |
1 |
|
lebnum.j |
|
2 |
|
lebnum.d |
|
3 |
|
lebnum.c |
|
4 |
|
lebnum.s |
|
5 |
|
lebnum.u |
|
6 |
|
lebnumlem1.u |
|
7 |
|
lebnumlem1.n |
|
8 |
|
lebnumlem1.f |
|
9 |
6
|
adantr |
|
10 |
2
|
ad2antrr |
|
11 |
|
difssd |
|
12 |
4
|
adantr |
|
13 |
12
|
sselda |
|
14 |
|
elssuni |
|
15 |
13 14
|
syl |
|
16 |
|
metxmet |
|
17 |
2 16
|
syl |
|
18 |
1
|
mopnuni |
|
19 |
17 18
|
syl |
|
20 |
19
|
ad2antrr |
|
21 |
15 20
|
sseqtrrd |
|
22 |
|
eleq1 |
|
23 |
22
|
notbid |
|
24 |
7 23
|
syl5ibrcom |
|
25 |
24
|
necon2ad |
|
26 |
25
|
adantr |
|
27 |
26
|
imp |
|
28 |
|
pssdifn0 |
|
29 |
21 27 28
|
syl2anc |
|
30 |
|
eqid |
|
31 |
30
|
metdsre |
|
32 |
10 11 29 31
|
syl3anc |
|
33 |
30
|
fmpt |
|
34 |
32 33
|
sylibr |
|
35 |
|
simplr |
|
36 |
|
rsp |
|
37 |
34 35 36
|
sylc |
|
38 |
9 37
|
fsumrecl |
|
39 |
5
|
eleq2d |
|
40 |
39
|
biimpa |
|
41 |
|
eluni2 |
|
42 |
40 41
|
sylib |
|
43 |
|
0red |
|
44 |
|
simplr |
|
45 |
|
eqid |
|
46 |
45
|
metdsval |
|
47 |
44 46
|
syl |
|
48 |
2
|
ad2antrr |
|
49 |
|
difssd |
|
50 |
4
|
ad2antrr |
|
51 |
|
simprl |
|
52 |
50 51
|
sseldd |
|
53 |
|
elssuni |
|
54 |
52 53
|
syl |
|
55 |
48 16 18
|
3syl |
|
56 |
54 55
|
sseqtrrd |
|
57 |
|
eleq1 |
|
58 |
57
|
notbid |
|
59 |
7 58
|
syl5ibrcom |
|
60 |
59
|
necon2ad |
|
61 |
60
|
ad2antrr |
|
62 |
51 61
|
mpd |
|
63 |
|
pssdifn0 |
|
64 |
56 62 63
|
syl2anc |
|
65 |
45
|
metdsre |
|
66 |
48 49 64 65
|
syl3anc |
|
67 |
66 44
|
ffvelrnd |
|
68 |
47 67
|
eqeltrrd |
|
69 |
38
|
adantr |
|
70 |
17
|
ad2antrr |
|
71 |
45
|
metdsf |
|
72 |
70 49 71
|
syl2anc |
|
73 |
72 44
|
ffvelrnd |
|
74 |
|
elxrge0 |
|
75 |
73 74
|
sylib |
|
76 |
75
|
simprd |
|
77 |
|
elndif |
|
78 |
77
|
ad2antll |
|
79 |
55
|
difeq1d |
|
80 |
1
|
mopntop |
|
81 |
70 80
|
syl |
|
82 |
|
eqid |
|
83 |
82
|
opncld |
|
84 |
81 52 83
|
syl2anc |
|
85 |
79 84
|
eqeltrd |
|
86 |
|
cldcls |
|
87 |
85 86
|
syl |
|
88 |
78 87
|
neleqtrrd |
|
89 |
45 1
|
metdseq0 |
|
90 |
70 49 44 89
|
syl3anc |
|
91 |
90
|
necon3abid |
|
92 |
88 91
|
mpbird |
|
93 |
67 76 92
|
ne0gt0d |
|
94 |
93 47
|
breqtrd |
|
95 |
6
|
ad2antrr |
|
96 |
37
|
adantlr |
|
97 |
17
|
ad2antrr |
|
98 |
30
|
metdsf |
|
99 |
97 11 98
|
syl2anc |
|
100 |
30
|
fmpt |
|
101 |
99 100
|
sylibr |
|
102 |
|
rsp |
|
103 |
101 35 102
|
sylc |
|
104 |
|
elxrge0 |
|
105 |
103 104
|
sylib |
|
106 |
105
|
simprd |
|
107 |
106
|
adantlr |
|
108 |
|
difeq2 |
|
109 |
108
|
mpteq1d |
|
110 |
109
|
rneqd |
|
111 |
110
|
infeq1d |
|
112 |
95 96 107 111 51
|
fsumge1 |
|
113 |
43 68 69 94 112
|
ltletrd |
|
114 |
42 113
|
rexlimddv |
|
115 |
38 114
|
elrpd |
|
116 |
115 8
|
fmptd |
|