| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j |  | 
						
							| 2 |  | lebnum.d |  | 
						
							| 3 |  | lebnum.c |  | 
						
							| 4 |  | lebnum.s |  | 
						
							| 5 |  | lebnum.u |  | 
						
							| 6 |  | lebnumlem1.u |  | 
						
							| 7 |  | lebnumlem1.n |  | 
						
							| 8 |  | lebnumlem1.f |  | 
						
							| 9 |  | lebnumlem2.k |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | metxmet |  | 
						
							| 12 | 2 11 | syl |  | 
						
							| 13 | 1 | mopntopon |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 2 | adantr |  | 
						
							| 16 |  | difssd |  | 
						
							| 17 | 12 | adantr |  | 
						
							| 18 | 17 13 | syl |  | 
						
							| 19 | 4 | sselda |  | 
						
							| 20 |  | toponss |  | 
						
							| 21 | 18 19 20 | syl2anc |  | 
						
							| 22 |  | eleq1 |  | 
						
							| 23 | 22 | notbid |  | 
						
							| 24 | 7 23 | syl5ibrcom |  | 
						
							| 25 | 24 | necon2ad |  | 
						
							| 26 | 25 | imp |  | 
						
							| 27 |  | pssdifn0 |  | 
						
							| 28 | 21 26 27 | syl2anc |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 29 1 10 | metdscn2 |  | 
						
							| 31 | 15 16 28 30 | syl3anc |  | 
						
							| 32 | 10 14 6 31 | fsumcn |  | 
						
							| 33 | 8 32 | eqeltrid |  | 
						
							| 34 | 10 | cnfldtopon |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 | 1 2 3 4 5 6 7 8 | lebnumlem1 |  | 
						
							| 37 | 36 | frnd |  | 
						
							| 38 |  | rpssre |  | 
						
							| 39 | 37 38 | sstrdi |  | 
						
							| 40 |  | ax-resscn |  | 
						
							| 41 | 40 | a1i |  | 
						
							| 42 |  | cnrest2 |  | 
						
							| 43 | 35 39 41 42 | syl3anc |  | 
						
							| 44 | 33 43 | mpbid |  | 
						
							| 45 |  | tgioo4 |  | 
						
							| 46 | 9 45 | eqtri |  | 
						
							| 47 | 46 | oveq2i |  | 
						
							| 48 | 44 47 | eleqtrrdi |  |