| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
|
| 2 |
|
lebnum.d |
|
| 3 |
|
lebnum.c |
|
| 4 |
|
lebnum.s |
|
| 5 |
|
lebnum.u |
|
| 6 |
|
lebnumlem1.u |
|
| 7 |
|
lebnumlem1.n |
|
| 8 |
|
lebnumlem1.f |
|
| 9 |
|
lebnumlem2.k |
|
| 10 |
|
1rp |
|
| 11 |
10
|
ne0ii |
|
| 12 |
|
ral0 |
|
| 13 |
|
simpr |
|
| 14 |
13
|
raleqdv |
|
| 15 |
12 14
|
mpbiri |
|
| 16 |
15
|
ralrimivw |
|
| 17 |
|
r19.2z |
|
| 18 |
11 16 17
|
sylancr |
|
| 19 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
frnd |
|
| 22 |
|
eqid |
|
| 23 |
3
|
adantr |
|
| 24 |
1 2 3 4 5 6 7 8 9
|
lebnumlem2 |
|
| 25 |
24
|
adantr |
|
| 26 |
|
metxmet |
|
| 27 |
1
|
mopnuni |
|
| 28 |
2 26 27
|
3syl |
|
| 29 |
28
|
neeq1d |
|
| 30 |
29
|
biimpa |
|
| 31 |
22 9 23 25 30
|
evth2 |
|
| 32 |
28
|
adantr |
|
| 33 |
|
raleq |
|
| 34 |
33
|
rexeqbi1dv |
|
| 35 |
32 34
|
syl |
|
| 36 |
31 35
|
mpbird |
|
| 37 |
|
ffn |
|
| 38 |
|
breq1 |
|
| 39 |
38
|
ralbidv |
|
| 40 |
39
|
rexrn |
|
| 41 |
20 37 40
|
3syl |
|
| 42 |
36 41
|
mpbird |
|
| 43 |
|
ssrexv |
|
| 44 |
21 42 43
|
sylc |
|
| 45 |
|
simpr |
|
| 46 |
5
|
ad2antrr |
|
| 47 |
|
simplr |
|
| 48 |
46 47
|
eqnetrrd |
|
| 49 |
|
unieq |
|
| 50 |
|
uni0 |
|
| 51 |
49 50
|
eqtrdi |
|
| 52 |
51
|
necon3i |
|
| 53 |
48 52
|
syl |
|
| 54 |
6
|
ad2antrr |
|
| 55 |
|
hashnncl |
|
| 56 |
54 55
|
syl |
|
| 57 |
53 56
|
mpbird |
|
| 58 |
57
|
nnrpd |
|
| 59 |
45 58
|
rpdivcld |
|
| 60 |
|
ralnex |
|
| 61 |
54
|
adantr |
|
| 62 |
53
|
adantr |
|
| 63 |
|
simprl |
|
| 64 |
63
|
adantr |
|
| 65 |
|
eqid |
|
| 66 |
65
|
metdsval |
|
| 67 |
64 66
|
syl |
|
| 68 |
2
|
ad2antrr |
|
| 69 |
68
|
ad2antrr |
|
| 70 |
|
difssd |
|
| 71 |
|
elssuni |
|
| 72 |
71
|
adantl |
|
| 73 |
46
|
ad2antrr |
|
| 74 |
72 73
|
sseqtrrd |
|
| 75 |
|
eleq1 |
|
| 76 |
75
|
notbid |
|
| 77 |
7 76
|
syl5ibrcom |
|
| 78 |
77
|
necon2ad |
|
| 79 |
78
|
ad3antrrr |
|
| 80 |
79
|
imp |
|
| 81 |
|
pssdifn0 |
|
| 82 |
74 80 81
|
syl2anc |
|
| 83 |
65
|
metdsre |
|
| 84 |
69 70 82 83
|
syl3anc |
|
| 85 |
84 64
|
ffvelcdmd |
|
| 86 |
67 85
|
eqeltrrd |
|
| 87 |
59
|
ad2antrr |
|
| 88 |
87
|
rpred |
|
| 89 |
|
simprr |
|
| 90 |
|
sseq2 |
|
| 91 |
90
|
notbid |
|
| 92 |
91
|
rspccva |
|
| 93 |
89 92
|
sylan |
|
| 94 |
69 26
|
syl |
|
| 95 |
87
|
rpxrd |
|
| 96 |
65
|
metdsge |
|
| 97 |
94 70 64 95 96
|
syl31anc |
|
| 98 |
|
blssm |
|
| 99 |
94 64 95 98
|
syl3anc |
|
| 100 |
|
difin0ss |
|
| 101 |
99 100
|
syl5com |
|
| 102 |
97 101
|
sylbid |
|
| 103 |
93 102
|
mtod |
|
| 104 |
85 88
|
ltnled |
|
| 105 |
103 104
|
mpbird |
|
| 106 |
67 105
|
eqbrtrrd |
|
| 107 |
61 62 86 88 106
|
fsumlt |
|
| 108 |
|
oveq1 |
|
| 109 |
108
|
mpteq2dv |
|
| 110 |
109
|
rneqd |
|
| 111 |
110
|
infeq1d |
|
| 112 |
111
|
sumeq2sdv |
|
| 113 |
|
sumex |
|
| 114 |
112 8 113
|
fvmpt |
|
| 115 |
63 114
|
syl |
|
| 116 |
59
|
adantr |
|
| 117 |
116
|
rpcnd |
|
| 118 |
|
fsumconst |
|
| 119 |
61 117 118
|
syl2anc |
|
| 120 |
|
simplr |
|
| 121 |
120
|
rpcnd |
|
| 122 |
57
|
adantr |
|
| 123 |
122
|
nncnd |
|
| 124 |
122
|
nnne0d |
|
| 125 |
121 123 124
|
divcan2d |
|
| 126 |
119 125
|
eqtr2d |
|
| 127 |
107 115 126
|
3brtr4d |
|
| 128 |
20
|
ad2antrr |
|
| 129 |
128 63
|
ffvelcdmd |
|
| 130 |
129
|
rpred |
|
| 131 |
120
|
rpred |
|
| 132 |
130 131
|
ltnled |
|
| 133 |
127 132
|
mpbid |
|
| 134 |
133
|
expr |
|
| 135 |
60 134
|
biimtrrid |
|
| 136 |
135
|
con4d |
|
| 137 |
136
|
ralimdva |
|
| 138 |
|
oveq2 |
|
| 139 |
138
|
sseq1d |
|
| 140 |
139
|
rexbidv |
|
| 141 |
140
|
ralbidv |
|
| 142 |
141
|
rspcev |
|
| 143 |
59 137 142
|
syl6an |
|
| 144 |
143
|
rexlimdva |
|
| 145 |
44 144
|
mpd |
|
| 146 |
18 145
|
pm2.61dane |
|