Metamath Proof Explorer


Theorem lebnumlem3

Description: Lemma for lebnum . By the previous lemmas, F is continuous and positive on a compact set, so it has a positive minimum r . Then setting d = r / # ( U ) , since for each u e. U we have ball ( x , d ) C_ u iff d <_ d ( x , X \ u ) , if -. ball ( x , d ) C_ u for all u then summing over u yields sum_ u e. U d ( x , X \ u ) = F ( x ) < sum_ u e. U d = r , in contradiction to the assumption that r is the minimum of F . (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j J = MetOpen D
lebnum.d φ D Met X
lebnum.c φ J Comp
lebnum.s φ U J
lebnum.u φ X = U
lebnumlem1.u φ U Fin
lebnumlem1.n φ ¬ X U
lebnumlem1.f F = y X k U sup ran z X k y D z * <
lebnumlem2.k K = topGen ran .
Assertion lebnumlem3 φ d + x X u U x ball D d u

Proof

Step Hyp Ref Expression
1 lebnum.j J = MetOpen D
2 lebnum.d φ D Met X
3 lebnum.c φ J Comp
4 lebnum.s φ U J
5 lebnum.u φ X = U
6 lebnumlem1.u φ U Fin
7 lebnumlem1.n φ ¬ X U
8 lebnumlem1.f F = y X k U sup ran z X k y D z * <
9 lebnumlem2.k K = topGen ran .
10 1rp 1 +
11 10 ne0ii +
12 ral0 x u U x ball D d u
13 simpr φ X = X =
14 13 raleqdv φ X = x X u U x ball D d u x u U x ball D d u
15 12 14 mpbiri φ X = x X u U x ball D d u
16 15 ralrimivw φ X = d + x X u U x ball D d u
17 r19.2z + d + x X u U x ball D d u d + x X u U x ball D d u
18 11 16 17 sylancr φ X = d + x X u U x ball D d u
19 1 2 3 4 5 6 7 8 lebnumlem1 φ F : X +
20 19 adantr φ X F : X +
21 20 frnd φ X ran F +
22 eqid J = J
23 3 adantr φ X J Comp
24 1 2 3 4 5 6 7 8 9 lebnumlem2 φ F J Cn K
25 24 adantr φ X F J Cn K
26 metxmet D Met X D ∞Met X
27 1 mopnuni D ∞Met X X = J
28 2 26 27 3syl φ X = J
29 28 neeq1d φ X J
30 29 biimpa φ X J
31 22 9 23 25 30 evth2 φ X w J x J F w F x
32 28 adantr φ X X = J
33 raleq X = J x X F w F x x J F w F x
34 33 rexeqbi1dv X = J w X x X F w F x w J x J F w F x
35 32 34 syl φ X w X x X F w F x w J x J F w F x
36 31 35 mpbird φ X w X x X F w F x
37 ffn F : X + F Fn X
38 breq1 r = F w r F x F w F x
39 38 ralbidv r = F w x X r F x x X F w F x
40 39 rexrn F Fn X r ran F x X r F x w X x X F w F x
41 20 37 40 3syl φ X r ran F x X r F x w X x X F w F x
42 36 41 mpbird φ X r ran F x X r F x
43 ssrexv ran F + r ran F x X r F x r + x X r F x
44 21 42 43 sylc φ X r + x X r F x
45 simpr φ X r + r +
46 5 ad2antrr φ X r + X = U
47 simplr φ X r + X
48 46 47 eqnetrrd φ X r + U
49 unieq U = U =
50 uni0 =
51 49 50 eqtrdi U = U =
52 51 necon3i U U
53 48 52 syl φ X r + U
54 6 ad2antrr φ X r + U Fin
55 hashnncl U Fin U U
56 54 55 syl φ X r + U U
57 53 56 mpbird φ X r + U
58 57 nnrpd φ X r + U +
59 45 58 rpdivcld φ X r + r U +
60 ralnex u U ¬ x ball D r U u ¬ u U x ball D r U u
61 54 adantr φ X r + x X u U ¬ x ball D r U u U Fin
62 53 adantr φ X r + x X u U ¬ x ball D r U u U
63 simprl φ X r + x X u U ¬ x ball D r U u x X
64 63 adantr φ X r + x X u U ¬ x ball D r U u k U x X
65 eqid y X sup ran z X k y D z * < = y X sup ran z X k y D z * <
66 65 metdsval x X y X sup ran z X k y D z * < x = sup ran z X k x D z * <
67 64 66 syl φ X r + x X u U ¬ x ball D r U u k U y X sup ran z X k y D z * < x = sup ran z X k x D z * <
68 2 ad2antrr φ X r + D Met X
69 68 ad2antrr φ X r + x X u U ¬ x ball D r U u k U D Met X
70 difssd φ X r + x X u U ¬ x ball D r U u k U X k X
71 elssuni k U k U
72 71 adantl φ X r + x X u U ¬ x ball D r U u k U k U
73 46 ad2antrr φ X r + x X u U ¬ x ball D r U u k U X = U
74 72 73 sseqtrrd φ X r + x X u U ¬ x ball D r U u k U k X
75 eleq1 k = X k U X U
76 75 notbid k = X ¬ k U ¬ X U
77 7 76 syl5ibrcom φ k = X ¬ k U
78 77 necon2ad φ k U k X
79 78 ad3antrrr φ X r + x X u U ¬ x ball D r U u k U k X
80 79 imp φ X r + x X u U ¬ x ball D r U u k U k X
81 pssdifn0 k X k X X k
82 74 80 81 syl2anc φ X r + x X u U ¬ x ball D r U u k U X k
83 65 metdsre D Met X X k X X k y X sup ran z X k y D z * < : X
84 69 70 82 83 syl3anc φ X r + x X u U ¬ x ball D r U u k U y X sup ran z X k y D z * < : X
85 84 64 ffvelrnd φ X r + x X u U ¬ x ball D r U u k U y X sup ran z X k y D z * < x
86 67 85 eqeltrrd φ X r + x X u U ¬ x ball D r U u k U sup ran z X k x D z * <
87 59 ad2antrr φ X r + x X u U ¬ x ball D r U u k U r U +
88 87 rpred φ X r + x X u U ¬ x ball D r U u k U r U
89 simprr φ X r + x X u U ¬ x ball D r U u u U ¬ x ball D r U u
90 sseq2 u = k x ball D r U u x ball D r U k
91 90 notbid u = k ¬ x ball D r U u ¬ x ball D r U k
92 91 rspccva u U ¬ x ball D r U u k U ¬ x ball D r U k
93 89 92 sylan φ X r + x X u U ¬ x ball D r U u k U ¬ x ball D r U k
94 69 26 syl φ X r + x X u U ¬ x ball D r U u k U D ∞Met X
95 87 rpxrd φ X r + x X u U ¬ x ball D r U u k U r U *
96 65 metdsge D ∞Met X X k X x X r U * r U y X sup ran z X k y D z * < x X k x ball D r U =
97 94 70 64 95 96 syl31anc φ X r + x X u U ¬ x ball D r U u k U r U y X sup ran z X k y D z * < x X k x ball D r U =
98 blssm D ∞Met X x X r U * x ball D r U X
99 94 64 95 98 syl3anc φ X r + x X u U ¬ x ball D r U u k U x ball D r U X
100 difin0ss X k x ball D r U = x ball D r U X x ball D r U k
101 99 100 syl5com φ X r + x X u U ¬ x ball D r U u k U X k x ball D r U = x ball D r U k
102 97 101 sylbid φ X r + x X u U ¬ x ball D r U u k U r U y X sup ran z X k y D z * < x x ball D r U k
103 93 102 mtod φ X r + x X u U ¬ x ball D r U u k U ¬ r U y X sup ran z X k y D z * < x
104 85 88 ltnled φ X r + x X u U ¬ x ball D r U u k U y X sup ran z X k y D z * < x < r U ¬ r U y X sup ran z X k y D z * < x
105 103 104 mpbird φ X r + x X u U ¬ x ball D r U u k U y X sup ran z X k y D z * < x < r U
106 67 105 eqbrtrrd φ X r + x X u U ¬ x ball D r U u k U sup ran z X k x D z * < < r U
107 61 62 86 88 106 fsumlt φ X r + x X u U ¬ x ball D r U u k U sup ran z X k x D z * < < k U r U
108 oveq1 y = x y D z = x D z
109 108 mpteq2dv y = x z X k y D z = z X k x D z
110 109 rneqd y = x ran z X k y D z = ran z X k x D z
111 110 infeq1d y = x sup ran z X k y D z * < = sup ran z X k x D z * <
112 111 sumeq2sdv y = x k U sup ran z X k y D z * < = k U sup ran z X k x D z * <
113 sumex k U sup ran z X k x D z * < V
114 112 8 113 fvmpt x X F x = k U sup ran z X k x D z * <
115 63 114 syl φ X r + x X u U ¬ x ball D r U u F x = k U sup ran z X k x D z * <
116 59 adantr φ X r + x X u U ¬ x ball D r U u r U +
117 116 rpcnd φ X r + x X u U ¬ x ball D r U u r U
118 fsumconst U Fin r U k U r U = U r U
119 61 117 118 syl2anc φ X r + x X u U ¬ x ball D r U u k U r U = U r U
120 simplr φ X r + x X u U ¬ x ball D r U u r +
121 120 rpcnd φ X r + x X u U ¬ x ball D r U u r
122 57 adantr φ X r + x X u U ¬ x ball D r U u U
123 122 nncnd φ X r + x X u U ¬ x ball D r U u U
124 122 nnne0d φ X r + x X u U ¬ x ball D r U u U 0
125 121 123 124 divcan2d φ X r + x X u U ¬ x ball D r U u U r U = r
126 119 125 eqtr2d φ X r + x X u U ¬ x ball D r U u r = k U r U
127 107 115 126 3brtr4d φ X r + x X u U ¬ x ball D r U u F x < r
128 20 ad2antrr φ X r + x X u U ¬ x ball D r U u F : X +
129 128 63 ffvelrnd φ X r + x X u U ¬ x ball D r U u F x +
130 129 rpred φ X r + x X u U ¬ x ball D r U u F x
131 120 rpred φ X r + x X u U ¬ x ball D r U u r
132 130 131 ltnled φ X r + x X u U ¬ x ball D r U u F x < r ¬ r F x
133 127 132 mpbid φ X r + x X u U ¬ x ball D r U u ¬ r F x
134 133 expr φ X r + x X u U ¬ x ball D r U u ¬ r F x
135 60 134 syl5bir φ X r + x X ¬ u U x ball D r U u ¬ r F x
136 135 con4d φ X r + x X r F x u U x ball D r U u
137 136 ralimdva φ X r + x X r F x x X u U x ball D r U u
138 oveq2 d = r U x ball D d = x ball D r U
139 138 sseq1d d = r U x ball D d u x ball D r U u
140 139 rexbidv d = r U u U x ball D d u u U x ball D r U u
141 140 ralbidv d = r U x X u U x ball D d u x X u U x ball D r U u
142 141 rspcev r U + x X u U x ball D r U u d + x X u U x ball D d u
143 59 137 142 syl6an φ X r + x X r F x d + x X u U x ball D d u
144 143 rexlimdva φ X r + x X r F x d + x X u U x ball D d u
145 44 144 mpd φ X d + x X u U x ball D d u
146 18 145 pm2.61dane φ d + x X u U x ball D d u