Metamath Proof Explorer


Theorem lecasei

Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007)

Ref Expression
Hypotheses lecase.1 φ A
lecase.2 φ B
lecase.3 φ A B ψ
lecase.4 φ B A ψ
Assertion lecasei φ ψ

Proof

Step Hyp Ref Expression
1 lecase.1 φ A
2 lecase.2 φ B
3 lecase.3 φ A B ψ
4 lecase.4 φ B A ψ
5 letric A B A B B A
6 1 2 5 syl2anc φ A B B A
7 3 4 6 mpjaodan φ ψ