Metamath Proof Explorer


Theorem lecm

Description: Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of Beran p. 40. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion lecm A C B C A B A 𝐶 B

Proof

Step Hyp Ref Expression
1 sseq1 A = if A C A 0 A B if A C A 0 B
2 breq1 A = if A C A 0 A 𝐶 B if A C A 0 𝐶 B
3 1 2 imbi12d A = if A C A 0 A B A 𝐶 B if A C A 0 B if A C A 0 𝐶 B
4 sseq2 B = if B C B 0 if A C A 0 B if A C A 0 if B C B 0
5 breq2 B = if B C B 0 if A C A 0 𝐶 B if A C A 0 𝐶 if B C B 0
6 4 5 imbi12d B = if B C B 0 if A C A 0 B if A C A 0 𝐶 B if A C A 0 if B C B 0 if A C A 0 𝐶 if B C B 0
7 h0elch 0 C
8 7 elimel if A C A 0 C
9 7 elimel if B C B 0 C
10 8 9 lecmi if A C A 0 if B C B 0 if A C A 0 𝐶 if B C B 0
11 3 6 10 dedth2h A C B C A B A 𝐶 B
12 11 3impia A C B C A B A 𝐶 B