Metamath Proof Explorer


Theorem lediv1

Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion lediv1 A B C 0 < C A B A C B C

Proof

Step Hyp Ref Expression
1 ltdiv1 B A C 0 < C B < A B C < A C
2 1 3com12 A B C 0 < C B < A B C < A C
3 2 notbid A B C 0 < C ¬ B < A ¬ B C < A C
4 lenlt A B A B ¬ B < A
5 4 3adant3 A B C 0 < C A B ¬ B < A
6 gt0ne0 C 0 < C C 0
7 6 3adant1 A C 0 < C C 0
8 redivcl A C C 0 A C
9 7 8 syld3an3 A C 0 < C A C
10 9 3expb A C 0 < C A C
11 10 3adant2 A B C 0 < C A C
12 6 3adant1 B C 0 < C C 0
13 redivcl B C C 0 B C
14 12 13 syld3an3 B C 0 < C B C
15 14 3expb B C 0 < C B C
16 15 3adant1 A B C 0 < C B C
17 11 16 lenltd A B C 0 < C A C B C ¬ B C < A C
18 3 5 17 3bitr4d A B C 0 < C A B A C B C