Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
0re |
|
3 |
|
ltletr |
|
4 |
2 3
|
mp3an1 |
|
5 |
4
|
imp |
|
6 |
5
|
gt0ne0d |
|
7 |
1 6
|
rereccld |
|
8 |
|
gt0ne0 |
|
9 |
|
rereccl |
|
10 |
8 9
|
syldan |
|
11 |
10
|
ad2ant2r |
|
12 |
|
recgt0 |
|
13 |
1 5 12
|
syl2anc |
|
14 |
|
ltle |
|
15 |
2 7 14
|
sylancr |
|
16 |
13 15
|
mpd |
|
17 |
|
simprr |
|
18 |
|
id |
|
19 |
18
|
ad2ant2r |
|
20 |
|
lerec |
|
21 |
19 1 5 20
|
syl12anc |
|
22 |
17 21
|
mpbid |
|
23 |
16 22
|
jca |
|
24 |
7 11 23
|
jca31 |
|
25 |
|
simplll |
|
26 |
|
simplrl |
|
27 |
|
simpllr |
|
28 |
25 26 27
|
jca31 |
|
29 |
|
simprll |
|
30 |
|
simprrl |
|
31 |
29 30
|
jca |
|
32 |
|
simprlr |
|
33 |
28 31 32
|
jca32 |
|
34 |
|
simplrr |
|
35 |
|
simprrr |
|
36 |
34 35
|
jca |
|
37 |
|
lemul12a |
|
38 |
33 36 37
|
sylc |
|
39 |
24 38
|
sylan2 |
|
40 |
|
recn |
|
41 |
40
|
adantr |
|
42 |
|
recn |
|
43 |
42
|
ad2antlr |
|
44 |
43
|
adantl |
|
45 |
6
|
adantl |
|
46 |
41 44 45
|
divrecd |
|
47 |
46
|
ad4ant14 |
|
48 |
|
recn |
|
49 |
48
|
adantr |
|
50 |
|
recn |
|
51 |
50
|
ad2antrl |
|
52 |
8
|
adantl |
|
53 |
49 51 52
|
divrecd |
|
54 |
53
|
adantrrr |
|
55 |
54
|
adantrlr |
|
56 |
55
|
ad4ant24 |
|
57 |
39 47 56
|
3brtr4d |
|