Metamath Proof Explorer


Theorem lediv12ad

Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltmul1d.1 φ A
ltmul1d.2 φ B
ltmul1d.3 φ C +
lediv12ad.4 φ D
lediv12ad.5 φ 0 A
lediv12ad.6 φ A B
lediv12ad.7 φ C D
Assertion lediv12ad φ A D B C

Proof

Step Hyp Ref Expression
1 ltmul1d.1 φ A
2 ltmul1d.2 φ B
3 ltmul1d.3 φ C +
4 lediv12ad.4 φ D
5 lediv12ad.5 φ 0 A
6 lediv12ad.6 φ A B
7 lediv12ad.7 φ C D
8 1 2 jca φ A B
9 5 6 jca φ 0 A A B
10 3 rpred φ C
11 10 4 jca φ C D
12 3 rpgt0d φ 0 < C
13 12 7 jca φ 0 < C C D
14 lediv12a A B 0 A A B C D 0 < C C D A D B C
15 8 9 11 13 14 syl22anc φ A D B C