Metamath Proof Explorer


Theorem lediv2

Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006)

Ref Expression
Assertion lediv2 A 0 < A B 0 < B C 0 < C A B C B C A

Proof

Step Hyp Ref Expression
1 gt0ne0 B 0 < B B 0
2 rereccl B B 0 1 B
3 1 2 syldan B 0 < B 1 B
4 3 3ad2ant2 A 0 < A B 0 < B C 0 < C 1 B
5 gt0ne0 A 0 < A A 0
6 rereccl A A 0 1 A
7 5 6 syldan A 0 < A 1 A
8 7 3ad2ant1 A 0 < A B 0 < B C 0 < C 1 A
9 simp3l A 0 < A B 0 < B C 0 < C C
10 simp3r A 0 < A B 0 < B C 0 < C 0 < C
11 lemul2 1 B 1 A C 0 < C 1 B 1 A C 1 B C 1 A
12 4 8 9 10 11 syl112anc A 0 < A B 0 < B C 0 < C 1 B 1 A C 1 B C 1 A
13 lerec A 0 < A B 0 < B A B 1 B 1 A
14 13 3adant3 A 0 < A B 0 < B C 0 < C A B 1 B 1 A
15 recn C C
16 recn B B
17 16 adantr B 0 < B B
18 17 1 jca B 0 < B B B 0
19 divrec C B B 0 C B = C 1 B
20 19 3expb C B B 0 C B = C 1 B
21 15 18 20 syl2an C B 0 < B C B = C 1 B
22 21 3adant2 C A 0 < A B 0 < B C B = C 1 B
23 recn A A
24 23 adantr A 0 < A A
25 24 5 jca A 0 < A A A 0
26 divrec C A A 0 C A = C 1 A
27 26 3expb C A A 0 C A = C 1 A
28 15 25 27 syl2an C A 0 < A C A = C 1 A
29 28 3adant3 C A 0 < A B 0 < B C A = C 1 A
30 22 29 breq12d C A 0 < A B 0 < B C B C A C 1 B C 1 A
31 30 3coml A 0 < A B 0 < B C C B C A C 1 B C 1 A
32 31 3adant3r A 0 < A B 0 < B C 0 < C C B C A C 1 B C 1 A
33 12 14 32 3bitr4d A 0 < A B 0 < B C 0 < C A B C B C A