Metamath Proof Explorer


Theorem lediv2a

Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion lediv2a A 0 < A B 0 < B C 0 C A B C B C A

Proof

Step Hyp Ref Expression
1 pm3.2 C C C C
2 1 pm2.43i C C C
3 2 adantr C 0 C C C
4 leid C C C
5 4 anim1ci C 0 C 0 C C C
6 3 5 jca C 0 C C C 0 C C C
7 6 ad2antlr A 0 < A C 0 C A B C C 0 C C C
8 7 3adantl2 A 0 < A B 0 < B C 0 C A B C C 0 C C C
9 id A B A B
10 9 ad2ant2r A 0 < A B 0 < B A B
11 10 adantr A 0 < A B 0 < B A B A B
12 simplr A 0 < A B 0 < B 0 < A
13 12 anim1i A 0 < A B 0 < B A B 0 < A A B
14 11 13 jca A 0 < A B 0 < B A B A B 0 < A A B
15 14 3adantl3 A 0 < A B 0 < B C 0 C A B A B 0 < A A B
16 lediv12a C C 0 C C C A B 0 < A A B C B C A
17 8 15 16 syl2anc A 0 < A B 0 < B C 0 C A B C B C A