Metamath Proof Explorer


Theorem lediv2ad

Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
lediv2ad.3 φ C
lediv2ad.4 φ 0 C
lediv2ad.5 φ A B
Assertion lediv2ad φ C B C A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 lediv2ad.3 φ C
4 lediv2ad.4 φ 0 C
5 lediv2ad.5 φ A B
6 1 rpregt0d φ A 0 < A
7 2 rpregt0d φ B 0 < B
8 3 4 jca φ C 0 C
9 lediv2a A 0 < A B 0 < B C 0 C A B C B C A
10 6 7 8 5 9 syl31anc φ C B C A