Metamath Proof Explorer


Theorem lediv2d

Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
ltdiv2d.3 φ C +
Assertion lediv2d φ A B C B C A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 ltdiv2d.3 φ C +
4 1 rpregt0d φ A 0 < A
5 2 rpregt0d φ B 0 < B
6 3 rpregt0d φ C 0 < C
7 lediv2 A 0 < A B 0 < B C 0 < C A B C B C A
8 4 5 6 7 syl3anc φ A B C B C A