Metamath Proof Explorer


Theorem ledivdiv

Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006)

Ref Expression
Assertion ledivdiv A 0 < A B 0 < B C 0 < C D 0 < D A B C D D C B A

Proof

Step Hyp Ref Expression
1 simpl B 0 < B B
2 gt0ne0 B 0 < B B 0
3 1 2 jca B 0 < B B B 0
4 redivcl A B B 0 A B
5 4 3expb A B B 0 A B
6 3 5 sylan2 A B 0 < B A B
7 6 adantlr A 0 < A B 0 < B A B
8 divgt0 A 0 < A B 0 < B 0 < A B
9 7 8 jca A 0 < A B 0 < B A B 0 < A B
10 simpl D 0 < D D
11 gt0ne0 D 0 < D D 0
12 10 11 jca D 0 < D D D 0
13 redivcl C D D 0 C D
14 13 3expb C D D 0 C D
15 12 14 sylan2 C D 0 < D C D
16 15 adantlr C 0 < C D 0 < D C D
17 divgt0 C 0 < C D 0 < D 0 < C D
18 16 17 jca C 0 < C D 0 < D C D 0 < C D
19 lerec A B 0 < A B C D 0 < C D A B C D 1 C D 1 A B
20 9 18 19 syl2an A 0 < A B 0 < B C 0 < C D 0 < D A B C D 1 C D 1 A B
21 recn C C
22 21 adantr C 0 < C C
23 gt0ne0 C 0 < C C 0
24 22 23 jca C 0 < C C C 0
25 recn D D
26 25 adantr D 0 < D D
27 26 11 jca D 0 < D D D 0
28 recdiv C C 0 D D 0 1 C D = D C
29 24 27 28 syl2an C 0 < C D 0 < D 1 C D = D C
30 recn A A
31 30 adantr A 0 < A A
32 gt0ne0 A 0 < A A 0
33 31 32 jca A 0 < A A A 0
34 recn B B
35 34 adantr B 0 < B B
36 35 2 jca B 0 < B B B 0
37 recdiv A A 0 B B 0 1 A B = B A
38 33 36 37 syl2an A 0 < A B 0 < B 1 A B = B A
39 29 38 breqan12rd A 0 < A B 0 < B C 0 < C D 0 < D 1 C D 1 A B D C B A
40 20 39 bitrd A 0 < A B 0 < B C 0 < C D 0 < D A B C D D C B A