Metamath Proof Explorer


Theorem ledivdivd

Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
ltdiv2d.3 φ C +
ledivdivd.4 φ D +
ledivdivd.5 φ A B C D
Assertion ledivdivd φ D C B A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 ltdiv2d.3 φ C +
4 ledivdivd.4 φ D +
5 ledivdivd.5 φ A B C D
6 1 rpregt0d φ A 0 < A
7 2 rpregt0d φ B 0 < B
8 3 rpregt0d φ C 0 < C
9 4 rpregt0d φ D 0 < D
10 ledivdiv A 0 < A B 0 < B C 0 < C D 0 < D A B C D D C B A
11 6 7 8 9 10 syl22anc φ A B C D D C B A
12 5 11 mpbid φ D C B A