Metamath Proof Explorer


Theorem ledivge1le

Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021)

Ref Expression
Assertion ledivge1le A B + C + 1 C A B A C B

Proof

Step Hyp Ref Expression
1 divle1le A B + A B 1 A B
2 1 adantr A B + C + A B 1 A B
3 rerpdivcl A B + A B
4 3 adantr A B + C + A B
5 1red A B + C + 1
6 rpre C + C
7 6 adantl A B + C + C
8 letr A B 1 C A B 1 1 C A B C
9 4 5 7 8 syl3anc A B + C + A B 1 1 C A B C
10 9 expd A B + C + A B 1 1 C A B C
11 2 10 sylbird A B + C + A B 1 C A B C
12 11 com23 A B + C + 1 C A B A B C
13 12 expimpd A B + C + 1 C A B A B C
14 13 ex A B + C + 1 C A B A B C
15 14 3imp1 A B + C + 1 C A B A B C
16 simp1 A B + C + 1 C A
17 6 adantr C + 1 C C
18 0lt1 0 < 1
19 0red C + 0
20 1red C + 1
21 ltletr 0 1 C 0 < 1 1 C 0 < C
22 19 20 6 21 syl3anc C + 0 < 1 1 C 0 < C
23 18 22 mpani C + 1 C 0 < C
24 23 imp C + 1 C 0 < C
25 17 24 jca C + 1 C C 0 < C
26 25 3ad2ant3 A B + C + 1 C C 0 < C
27 rpregt0 B + B 0 < B
28 27 3ad2ant2 A B + C + 1 C B 0 < B
29 16 26 28 3jca A B + C + 1 C A C 0 < C B 0 < B
30 29 adantr A B + C + 1 C A B A C 0 < C B 0 < B
31 lediv23 A C 0 < C B 0 < B A C B A B C
32 30 31 syl A B + C + 1 C A B A C B A B C
33 15 32 mpbird A B + C + 1 C A B A C B
34 33 ex A B + C + 1 C A B A C B