Metamath Proof Explorer


Theorem ledivp1

Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005)

Ref Expression
Assertion ledivp1 A 0 A B 0 B A B + 1 B A

Proof

Step Hyp Ref Expression
1 simprl A 0 A B 0 B B
2 peano2re B B + 1
3 2 ad2antrl A 0 A B 0 B B + 1
4 simpll A 0 A B 0 B A
5 ltp1 B B < B + 1
6 0re 0
7 lelttr 0 B B + 1 0 B B < B + 1 0 < B + 1
8 6 7 mp3an1 B B + 1 0 B B < B + 1 0 < B + 1
9 2 8 mpdan B 0 B B < B + 1 0 < B + 1
10 5 9 mpan2d B 0 B 0 < B + 1
11 10 imp B 0 B 0 < B + 1
12 11 gt0ne0d B 0 B B + 1 0
13 12 adantl A 0 A B 0 B B + 1 0
14 4 3 13 redivcld A 0 A B 0 B A B + 1
15 2 adantr B 0 B B + 1
16 15 11 jca B 0 B B + 1 0 < B + 1
17 divge0 A 0 A B + 1 0 < B + 1 0 A B + 1
18 16 17 sylan2 A 0 A B 0 B 0 A B + 1
19 14 18 jca A 0 A B 0 B A B + 1 0 A B + 1
20 lep1 B B B + 1
21 20 ad2antrl A 0 A B 0 B B B + 1
22 lemul2a B B + 1 A B + 1 0 A B + 1 B B + 1 A B + 1 B A B + 1 B + 1
23 1 3 19 21 22 syl31anc A 0 A B 0 B A B + 1 B A B + 1 B + 1
24 recn A A
25 24 ad2antrr A 0 A B 0 B A
26 2 recnd B B + 1
27 26 ad2antrl A 0 A B 0 B B + 1
28 25 27 13 divcan1d A 0 A B 0 B A B + 1 B + 1 = A
29 23 28 breqtrd A 0 A B 0 B A B + 1 B A