Metamath Proof Explorer


Theorem ledivp1i

Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
Assertion ledivp1i 0 A 0 C A B C + 1 A C B

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 1re 1
5 3 4 readdcli C + 1
6 3 ltp1i C < C + 1
7 3 5 6 ltleii C C + 1
8 lemul2a C C + 1 A 0 A C C + 1 A C A C + 1
9 7 8 mpan2 C C + 1 A 0 A A C A C + 1
10 3 5 9 mp3an12 A 0 A A C A C + 1
11 1 10 mpan 0 A A C A C + 1
12 11 3ad2ant1 0 A 0 C A B C + 1 A C A C + 1
13 0re 0
14 13 3 5 lelttri 0 C C < C + 1 0 < C + 1
15 6 14 mpan2 0 C 0 < C + 1
16 5 gt0ne0i 0 < C + 1 C + 1 0
17 2 5 redivclzi C + 1 0 B C + 1
18 16 17 syl 0 < C + 1 B C + 1
19 lemul1 A B C + 1 C + 1 0 < C + 1 A B C + 1 A C + 1 B C + 1 C + 1
20 1 19 mp3an1 B C + 1 C + 1 0 < C + 1 A B C + 1 A C + 1 B C + 1 C + 1
21 20 ex B C + 1 C + 1 0 < C + 1 A B C + 1 A C + 1 B C + 1 C + 1
22 5 21 mpani B C + 1 0 < C + 1 A B C + 1 A C + 1 B C + 1 C + 1
23 18 22 mpcom 0 < C + 1 A B C + 1 A C + 1 B C + 1 C + 1
24 23 biimpd 0 < C + 1 A B C + 1 A C + 1 B C + 1 C + 1
25 15 24 syl 0 C A B C + 1 A C + 1 B C + 1 C + 1
26 25 imp 0 C A B C + 1 A C + 1 B C + 1 C + 1
27 2 recni B
28 5 recni C + 1
29 27 28 divcan1zi C + 1 0 B C + 1 C + 1 = B
30 15 16 29 3syl 0 C B C + 1 C + 1 = B
31 30 adantr 0 C A B C + 1 B C + 1 C + 1 = B
32 26 31 breqtrd 0 C A B C + 1 A C + 1 B
33 32 3adant1 0 A 0 C A B C + 1 A C + 1 B
34 1 3 remulcli A C
35 1 5 remulcli A C + 1
36 34 35 2 letri A C A C + 1 A C + 1 B A C B
37 12 33 36 syl2anc 0 A 0 C A B C + 1 A C B