Metamath Proof Explorer


Theorem ledm

Description: The domain of <_ is RR* . (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Assertion ledm * = dom

Proof

Step Hyp Ref Expression
1 xrleid x * x x
2 lerel Rel
3 2 releldmi x x x dom
4 1 3 syl x * x dom
5 4 ssriv * dom
6 lerelxr * × *
7 dmss * × * dom dom * × *
8 6 7 ax-mp dom dom * × *
9 dmxpss dom * × * *
10 8 9 sstri dom *
11 5 10 eqssi * = dom