Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
breq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
breq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
breq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
breq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
recn |
|
18 |
|
recn |
|
19 |
|
exp0 |
|
20 |
19
|
adantr |
|
21 |
|
1le1 |
|
22 |
20 21
|
eqbrtrdi |
|
23 |
|
exp0 |
|
24 |
23
|
adantl |
|
25 |
22 24
|
breqtrrd |
|
26 |
17 18 25
|
syl2an |
|
27 |
26
|
adantr |
|
28 |
|
reexpcl |
|
29 |
28
|
ad4ant14 |
|
30 |
|
simplll |
|
31 |
|
simpr |
|
32 |
|
simplrl |
|
33 |
|
expge0 |
|
34 |
30 31 32 33
|
syl3anc |
|
35 |
|
reexpcl |
|
36 |
35
|
ad4ant24 |
|
37 |
29 34 36
|
jca31 |
|
38 |
|
simpl |
|
39 |
|
simpl |
|
40 |
38 39
|
anim12i |
|
41 |
40
|
adantr |
|
42 |
|
simpllr |
|
43 |
37 41 42
|
jca32 |
|
44 |
43
|
adantr |
|
45 |
|
simplrr |
|
46 |
45
|
anim1ci |
|
47 |
|
lemul12a |
|
48 |
44 46 47
|
sylc |
|
49 |
|
expp1 |
|
50 |
17 49
|
sylan |
|
51 |
50
|
ad5ant14 |
|
52 |
|
expp1 |
|
53 |
18 52
|
sylan |
|
54 |
53
|
ad5ant24 |
|
55 |
48 51 54
|
3brtr4d |
|
56 |
55
|
ex |
|
57 |
56
|
expcom |
|
58 |
57
|
a2d |
|
59 |
4 8 12 16 27 58
|
nn0ind |
|
60 |
59
|
exp4c |
|
61 |
60
|
com3l |
|
62 |
61
|
3imp1 |
|