Metamath Proof Explorer


Theorem leexp2

Description: Ordering law for exponentiation. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Assertion leexp2 A M N 1 < A M N A M A N

Proof

Step Hyp Ref Expression
1 3ancomb A M N A N M
2 ltexp2 A N M 1 < A N < M A N < A M
3 1 2 sylanb A M N 1 < A N < M A N < A M
4 3 notbid A M N 1 < A ¬ N < M ¬ A N < A M
5 simpl2 A M N 1 < A M
6 simpl3 A M N 1 < A N
7 zre M M
8 zre N N
9 lenlt M N M N ¬ N < M
10 7 8 9 syl2an M N M N ¬ N < M
11 5 6 10 syl2anc A M N 1 < A M N ¬ N < M
12 simpl1 A M N 1 < A A
13 0red A M N 1 < A 0
14 1red A M N 1 < A 1
15 0lt1 0 < 1
16 15 a1i A M N 1 < A 0 < 1
17 simpr A M N 1 < A 1 < A
18 13 14 12 16 17 lttrd A M N 1 < A 0 < A
19 18 gt0ne0d A M N 1 < A A 0
20 reexpclz A A 0 M A M
21 12 19 5 20 syl3anc A M N 1 < A A M
22 reexpclz A A 0 N A N
23 12 19 6 22 syl3anc A M N 1 < A A N
24 21 23 lenltd A M N 1 < A A M A N ¬ A N < A M
25 4 11 24 3bitr4d A M N 1 < A M N A M A N