Metamath Proof Explorer


Theorem leexp2a

Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion leexp2a A 1 A N M A M A N

Proof

Step Hyp Ref Expression
1 simp1 A 1 A N M A
2 0red A 1 A N M 0
3 1red A 1 A N M 1
4 0lt1 0 < 1
5 4 a1i A 1 A N M 0 < 1
6 simp2 A 1 A N M 1 A
7 2 3 1 5 6 ltletrd A 1 A N M 0 < A
8 1 7 elrpd A 1 A N M A +
9 eluzel2 N M M
10 9 3ad2ant3 A 1 A N M M
11 rpexpcl A + M A M +
12 8 10 11 syl2anc A 1 A N M A M +
13 12 rpred A 1 A N M A M
14 13 recnd A 1 A N M A M
15 14 mulid2d A 1 A N M 1 A M = A M
16 uznn0sub N M N M 0
17 16 3ad2ant3 A 1 A N M N M 0
18 expge1 A N M 0 1 A 1 A N M
19 1 17 6 18 syl3anc A 1 A N M 1 A N M
20 1 recnd A 1 A N M A
21 7 gt0ne0d A 1 A N M A 0
22 eluzelz N M N
23 22 3ad2ant3 A 1 A N M N
24 expsub A A 0 N M A N M = A N A M
25 20 21 23 10 24 syl22anc A 1 A N M A N M = A N A M
26 19 25 breqtrd A 1 A N M 1 A N A M
27 rpexpcl A + N A N +
28 8 23 27 syl2anc A 1 A N M A N +
29 28 rpred A 1 A N M A N
30 3 29 12 lemuldivd A 1 A N M 1 A M A N 1 A N A M
31 26 30 mpbird A 1 A N M 1 A M A N
32 15 31 eqbrtrrd A 1 A N M A M A N