Metamath Proof Explorer


Theorem leexp2ad

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 φ A
leexp2ad.2 φ 1 A
leexp2ad.3 φ N M
Assertion leexp2ad φ A M A N

Proof

Step Hyp Ref Expression
1 resqcld.1 φ A
2 leexp2ad.2 φ 1 A
3 leexp2ad.3 φ N M
4 leexp2a A 1 A N M A M A N
5 1 2 3 4 syl3anc φ A M A N