Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
breq1d |
|
3 |
2
|
imbi2d |
|
4 |
|
oveq2 |
|
5 |
4
|
breq1d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
7
|
breq1d |
|
9 |
8
|
imbi2d |
|
10 |
|
oveq2 |
|
11 |
10
|
breq1d |
|
12 |
11
|
imbi2d |
|
13 |
|
reexpcl |
|
14 |
13
|
adantr |
|
15 |
14
|
leidd |
|
16 |
|
simprll |
|
17 |
|
1red |
|
18 |
|
simprlr |
|
19 |
|
simpl |
|
20 |
|
eluznn0 |
|
21 |
18 19 20
|
syl2anc |
|
22 |
|
reexpcl |
|
23 |
16 21 22
|
syl2anc |
|
24 |
|
simprrl |
|
25 |
|
expge0 |
|
26 |
16 21 24 25
|
syl3anc |
|
27 |
|
simprrr |
|
28 |
16 17 23 26 27
|
lemul2ad |
|
29 |
16
|
recnd |
|
30 |
|
expp1 |
|
31 |
29 21 30
|
syl2anc |
|
32 |
23
|
recnd |
|
33 |
32
|
mulid1d |
|
34 |
33
|
eqcomd |
|
35 |
28 31 34
|
3brtr4d |
|
36 |
|
peano2nn0 |
|
37 |
21 36
|
syl |
|
38 |
|
reexpcl |
|
39 |
16 37 38
|
syl2anc |
|
40 |
13
|
ad2antrl |
|
41 |
|
letr |
|
42 |
39 23 40 41
|
syl3anc |
|
43 |
35 42
|
mpand |
|
44 |
43
|
ex |
|
45 |
44
|
a2d |
|
46 |
3 6 9 12 15 45
|
uzind4i |
|
47 |
46
|
expd |
|
48 |
47
|
com12 |
|
49 |
48
|
3impia |
|
50 |
49
|
imp |
|