| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | breq1d |  | 
						
							| 3 | 2 | imbi2d |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 | 4 | breq1d |  | 
						
							| 6 | 5 | imbi2d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 | 7 | breq1d |  | 
						
							| 9 | 8 | imbi2d |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 10 | breq1d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | reexpcl |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | leidd |  | 
						
							| 16 |  | simprll |  | 
						
							| 17 |  | 1red |  | 
						
							| 18 |  | simprlr |  | 
						
							| 19 |  | simpl |  | 
						
							| 20 |  | eluznn0 |  | 
						
							| 21 | 18 19 20 | syl2anc |  | 
						
							| 22 |  | reexpcl |  | 
						
							| 23 | 16 21 22 | syl2anc |  | 
						
							| 24 |  | simprrl |  | 
						
							| 25 |  | expge0 |  | 
						
							| 26 | 16 21 24 25 | syl3anc |  | 
						
							| 27 |  | simprrr |  | 
						
							| 28 | 16 17 23 26 27 | lemul2ad |  | 
						
							| 29 | 16 | recnd |  | 
						
							| 30 |  | expp1 |  | 
						
							| 31 | 29 21 30 | syl2anc |  | 
						
							| 32 | 23 | recnd |  | 
						
							| 33 | 32 | mulridd |  | 
						
							| 34 | 33 | eqcomd |  | 
						
							| 35 | 28 31 34 | 3brtr4d |  | 
						
							| 36 |  | peano2nn0 |  | 
						
							| 37 | 21 36 | syl |  | 
						
							| 38 |  | reexpcl |  | 
						
							| 39 | 16 37 38 | syl2anc |  | 
						
							| 40 | 13 | ad2antrl |  | 
						
							| 41 |  | letr |  | 
						
							| 42 | 39 23 40 41 | syl3anc |  | 
						
							| 43 | 35 42 | mpand |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 | 44 | a2d |  | 
						
							| 46 | 3 6 9 12 15 45 | uzind4i |  | 
						
							| 47 | 46 | expd |  | 
						
							| 48 | 47 | com12 |  | 
						
							| 49 | 48 | 3impia |  | 
						
							| 50 | 49 | imp |  |