Metamath Proof Explorer


Theorem leexp2r

Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion leexp2r A M 0 N M 0 A A 1 A N A M

Proof

Step Hyp Ref Expression
1 oveq2 j = M A j = A M
2 1 breq1d j = M A j A M A M A M
3 2 imbi2d j = M A M 0 0 A A 1 A j A M A M 0 0 A A 1 A M A M
4 oveq2 j = k A j = A k
5 4 breq1d j = k A j A M A k A M
6 5 imbi2d j = k A M 0 0 A A 1 A j A M A M 0 0 A A 1 A k A M
7 oveq2 j = k + 1 A j = A k + 1
8 7 breq1d j = k + 1 A j A M A k + 1 A M
9 8 imbi2d j = k + 1 A M 0 0 A A 1 A j A M A M 0 0 A A 1 A k + 1 A M
10 oveq2 j = N A j = A N
11 10 breq1d j = N A j A M A N A M
12 11 imbi2d j = N A M 0 0 A A 1 A j A M A M 0 0 A A 1 A N A M
13 reexpcl A M 0 A M
14 13 adantr A M 0 0 A A 1 A M
15 14 leidd A M 0 0 A A 1 A M A M
16 simprll k M A M 0 0 A A 1 A
17 1red k M A M 0 0 A A 1 1
18 simprlr k M A M 0 0 A A 1 M 0
19 simpl k M A M 0 0 A A 1 k M
20 eluznn0 M 0 k M k 0
21 18 19 20 syl2anc k M A M 0 0 A A 1 k 0
22 reexpcl A k 0 A k
23 16 21 22 syl2anc k M A M 0 0 A A 1 A k
24 simprrl k M A M 0 0 A A 1 0 A
25 expge0 A k 0 0 A 0 A k
26 16 21 24 25 syl3anc k M A M 0 0 A A 1 0 A k
27 simprrr k M A M 0 0 A A 1 A 1
28 16 17 23 26 27 lemul2ad k M A M 0 0 A A 1 A k A A k 1
29 16 recnd k M A M 0 0 A A 1 A
30 expp1 A k 0 A k + 1 = A k A
31 29 21 30 syl2anc k M A M 0 0 A A 1 A k + 1 = A k A
32 23 recnd k M A M 0 0 A A 1 A k
33 32 mulid1d k M A M 0 0 A A 1 A k 1 = A k
34 33 eqcomd k M A M 0 0 A A 1 A k = A k 1
35 28 31 34 3brtr4d k M A M 0 0 A A 1 A k + 1 A k
36 peano2nn0 k 0 k + 1 0
37 21 36 syl k M A M 0 0 A A 1 k + 1 0
38 reexpcl A k + 1 0 A k + 1
39 16 37 38 syl2anc k M A M 0 0 A A 1 A k + 1
40 13 ad2antrl k M A M 0 0 A A 1 A M
41 letr A k + 1 A k A M A k + 1 A k A k A M A k + 1 A M
42 39 23 40 41 syl3anc k M A M 0 0 A A 1 A k + 1 A k A k A M A k + 1 A M
43 35 42 mpand k M A M 0 0 A A 1 A k A M A k + 1 A M
44 43 ex k M A M 0 0 A A 1 A k A M A k + 1 A M
45 44 a2d k M A M 0 0 A A 1 A k A M A M 0 0 A A 1 A k + 1 A M
46 3 6 9 12 15 45 uzind4i N M A M 0 0 A A 1 A N A M
47 46 expd N M A M 0 0 A A 1 A N A M
48 47 com12 A M 0 N M 0 A A 1 A N A M
49 48 3impia A M 0 N M 0 A A 1 A N A M
50 49 imp A M 0 N M 0 A A 1 A N A M