Metamath Proof Explorer


Theorem leexp2rd

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 φ A
leexp2rd.2 φ M 0
leexp2rd.3 φ N M
leexp2rd.4 φ 0 A
leexp2rd.5 φ A 1
Assertion leexp2rd φ A N A M

Proof

Step Hyp Ref Expression
1 resqcld.1 φ A
2 leexp2rd.2 φ M 0
3 leexp2rd.3 φ N M
4 leexp2rd.4 φ 0 A
5 leexp2rd.5 φ A 1
6 leexp2r A M 0 N M 0 A A 1 A N A M
7 1 2 3 4 5 6 syl32anc φ A N A M