Step |
Hyp |
Ref |
Expression |
1 |
|
lefldiveq.a |
|
2 |
|
lefldiveq.b |
|
3 |
|
lefldiveq.c |
|
4 |
|
moddiffl |
|
5 |
1 2 4
|
syl2anc |
|
6 |
1 2
|
rerpdivcld |
|
7 |
6
|
flcld |
|
8 |
5 7
|
eqeltrd |
|
9 |
|
flid |
|
10 |
8 9
|
syl |
|
11 |
10 5
|
eqtr2d |
|
12 |
1 2
|
modcld |
|
13 |
1 12
|
resubcld |
|
14 |
13 2
|
rerpdivcld |
|
15 |
|
iccssre |
|
16 |
13 1 15
|
syl2anc |
|
17 |
16 3
|
sseldd |
|
18 |
17 2
|
rerpdivcld |
|
19 |
13
|
rexrd |
|
20 |
1
|
rexrd |
|
21 |
|
iccgelb |
|
22 |
19 20 3 21
|
syl3anc |
|
23 |
13 17 2 22
|
lediv1dd |
|
24 |
|
flwordi |
|
25 |
14 18 23 24
|
syl3anc |
|
26 |
11 25
|
eqbrtrd |
|
27 |
|
iccleub |
|
28 |
19 20 3 27
|
syl3anc |
|
29 |
17 1 2 28
|
lediv1dd |
|
30 |
|
flwordi |
|
31 |
18 6 29 30
|
syl3anc |
|
32 |
|
reflcl |
|
33 |
6 32
|
syl |
|
34 |
|
reflcl |
|
35 |
18 34
|
syl |
|
36 |
33 35
|
letri3d |
|
37 |
26 31 36
|
mpbir2and |
|