Database
SURREAL NUMBERS
Conway cut representation
Cuts and Options
left1s
Next ⟩
right1s
Metamath Proof Explorer
Ascii
Unicode
Theorem
left1s
Description:
The left set of
1s
is the singleton of
0s
.
(Contributed by
Scott Fenton
, 4-Feb-2025)
Ref
Expression
Assertion
left1s
⊢
L
⁡
1
s
=
0
s
Proof
Step
Hyp
Ref
Expression
1
leftval
⊢
L
⁡
1
s
=
x
∈
Old
⁡
bday
⁡
1
s
|
x
<
s
1
s
2
bday1s
⊢
bday
⁡
1
s
=
1
𝑜
3
2
fveq2i
⊢
Old
⁡
bday
⁡
1
s
=
Old
⁡
1
𝑜
4
old1
⊢
Old
⁡
1
𝑜
=
0
s
5
3
4
eqtri
⊢
Old
⁡
bday
⁡
1
s
=
0
s
6
5
rabeqi
⊢
x
∈
Old
⁡
bday
⁡
1
s
|
x
<
s
1
s
=
x
∈
0
s
|
x
<
s
1
s
7
breq1
⊢
x
=
0
s
→
x
<
s
1
s
↔
0
s
<
s
1
s
8
7
rabsnif
⊢
x
∈
0
s
|
x
<
s
1
s
=
if
0
s
<
s
1
s
0
s
∅
9
6
8
eqtri
⊢
x
∈
Old
⁡
bday
⁡
1
s
|
x
<
s
1
s
=
if
0
s
<
s
1
s
0
s
∅
10
0slt1s
⊢
0
s
<
s
1
s
11
10
iftruei
⊢
if
0
s
<
s
1
s
0
s
∅
=
0
s
12
1
9
11
3eqtri
⊢
L
⁡
1
s
=
0
s