Metamath Proof Explorer


Theorem leftval

Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion leftval Could not format assertion : No typesetting found for |- ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x

Proof

Step Hyp Ref Expression
1 2fveq3 y=AOldbdayy=OldbdayA
2 breq2 y=Ax<syx<sA
3 1 2 rabeqbidv y=AxOldbdayy|x<sy=xOldbdayA|x<sA
4 df-left Could not format _Left = ( y e. No |-> { x e. ( _Old ` ( bday ` y ) ) | x { x e. ( _Old ` ( bday ` y ) ) | x
5 fvex OldbdayAV
6 5 rabex xOldbdayA|x<sAV
7 3 4 6 fvmpt Could not format ( A e. No -> ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x
8 4 fvmptndm Could not format ( -. A e. No -> ( _Left ` A ) = (/) ) : No typesetting found for |- ( -. A e. No -> ( _Left ` A ) = (/) ) with typecode |-
9 bdaydm dombday=No
10 9 eleq2i AdombdayANo
11 ndmfv ¬AdombdaybdayA=
12 10 11 sylnbir ¬ANobdayA=
13 12 fveq2d ¬ANoOldbdayA=Old
14 old0 Old=
15 13 14 eqtrdi ¬ANoOldbdayA=
16 15 rabeqdv ¬ANoxOldbdayA|x<sA=x|x<sA
17 rab0 x|x<sA=
18 16 17 eqtrdi ¬ANoxOldbdayA|x<sA=
19 8 18 eqtr4d Could not format ( -. A e. No -> ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x
20 7 19 pm2.61i Could not format ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x