Metamath Proof Explorer


Theorem leg0

Description: Degenerated (zero-length) segments are minimal. Proposition 5.11 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P = Base G
legval.d - ˙ = dist G
legval.i I = Itv G
legval.l ˙ = 𝒢 G
legval.g φ G 𝒢 Tarski
legid.a φ A P
legid.b φ B P
legtrd.c φ C P
legtrd.d φ D P
Assertion leg0 φ A - ˙ A ˙ C - ˙ D

Proof

Step Hyp Ref Expression
1 legval.p P = Base G
2 legval.d - ˙ = dist G
3 legval.i I = Itv G
4 legval.l ˙ = 𝒢 G
5 legval.g φ G 𝒢 Tarski
6 legid.a φ A P
7 legid.b φ B P
8 legtrd.c φ C P
9 legtrd.d φ D P
10 1 2 3 5 8 9 tgbtwntriv1 φ C C I D
11 1 2 3 5 6 8 tgcgrtriv φ A - ˙ A = C - ˙ C
12 eleq1 x = C x C I D C C I D
13 oveq2 x = C C - ˙ x = C - ˙ C
14 13 eqeq2d x = C A - ˙ A = C - ˙ x A - ˙ A = C - ˙ C
15 12 14 anbi12d x = C x C I D A - ˙ A = C - ˙ x C C I D A - ˙ A = C - ˙ C
16 15 rspcev C P C C I D A - ˙ A = C - ˙ C x P x C I D A - ˙ A = C - ˙ x
17 8 10 11 16 syl12anc φ x P x C I D A - ˙ A = C - ˙ x
18 1 2 3 4 5 6 6 8 9 legov φ A - ˙ A ˙ C - ˙ D x P x C I D A - ˙ A = C - ˙ x
19 17 18 mpbird φ A - ˙ A ˙ C - ˙ D