Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
legid.a |
|
7 |
|
legid.b |
|
8 |
|
legtrd.c |
|
9 |
|
legtrd.d |
|
10 |
|
legbtwn.1 |
|
11 |
|
legbtwn.2 |
|
12 |
|
simpr |
|
13 |
5
|
adantr |
|
14 |
6
|
adantr |
|
15 |
7
|
adantr |
|
16 |
8
|
adantr |
|
17 |
|
simpr |
|
18 |
1 2 3 13 16 15 14 17
|
tgbtwncom |
|
19 |
1 2 3 13 15 16
|
tgbtwntriv1 |
|
20 |
11
|
adantr |
|
21 |
1 2 3 4 13 16 15 14 17
|
btwnleg |
|
22 |
1 2 3 4 13 16 14 16 15 20 21
|
legtri3 |
|
23 |
1 2 3 13 16 14 16 15 22
|
tgcgrcomlr |
|
24 |
|
eqidd |
|
25 |
1 2 3 13 14 15 16 15 15 16 18 19 23 24
|
tgcgrsub |
|
26 |
1 2 3 13 14 15 15 25
|
axtgcgrid |
|
27 |
26 17
|
eqeltrd |
|
28 |
26
|
oveq2d |
|
29 |
27 28
|
eleqtrd |
|
30 |
12 29 10
|
mpjaodan |
|