Metamath Proof Explorer


Theorem legbtwn

Description: Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses legval.p P = Base G
legval.d - ˙ = dist G
legval.i I = Itv G
legval.l ˙ = 𝒢 G
legval.g φ G 𝒢 Tarski
legid.a φ A P
legid.b φ B P
legtrd.c φ C P
legtrd.d φ D P
legbtwn.1 φ A C I B B C I A
legbtwn.2 φ C - ˙ A ˙ C - ˙ B
Assertion legbtwn φ A C I B

Proof

Step Hyp Ref Expression
1 legval.p P = Base G
2 legval.d - ˙ = dist G
3 legval.i I = Itv G
4 legval.l ˙ = 𝒢 G
5 legval.g φ G 𝒢 Tarski
6 legid.a φ A P
7 legid.b φ B P
8 legtrd.c φ C P
9 legtrd.d φ D P
10 legbtwn.1 φ A C I B B C I A
11 legbtwn.2 φ C - ˙ A ˙ C - ˙ B
12 simpr φ A C I B A C I B
13 5 adantr φ B C I A G 𝒢 Tarski
14 6 adantr φ B C I A A P
15 7 adantr φ B C I A B P
16 8 adantr φ B C I A C P
17 simpr φ B C I A B C I A
18 1 2 3 13 16 15 14 17 tgbtwncom φ B C I A B A I C
19 1 2 3 13 15 16 tgbtwntriv1 φ B C I A B B I C
20 11 adantr φ B C I A C - ˙ A ˙ C - ˙ B
21 1 2 3 4 13 16 15 14 17 btwnleg φ B C I A C - ˙ B ˙ C - ˙ A
22 1 2 3 4 13 16 14 16 15 20 21 legtri3 φ B C I A C - ˙ A = C - ˙ B
23 1 2 3 13 16 14 16 15 22 tgcgrcomlr φ B C I A A - ˙ C = B - ˙ C
24 eqidd φ B C I A B - ˙ C = B - ˙ C
25 1 2 3 13 14 15 16 15 15 16 18 19 23 24 tgcgrsub φ B C I A A - ˙ B = B - ˙ B
26 1 2 3 13 14 15 15 25 axtgcgrid φ B C I A A = B
27 26 17 eqeltrd φ B C I A A C I A
28 26 oveq2d φ B C I A C I A = C I B
29 27 28 eleqtrd φ B C I A A C I B
30 12 29 10 mpjaodan φ A C I B